

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTING AN INTRUSION DETECTION SYSTEM IN
THE MYSEA ARCHITECTURE

by

Thomas Tenhunen

June 2008

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Implementing an Intrusion Detection System
in the Mysea Architecture

6. AUTHOR(S) Thomas Tenhunen

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The Monterey Security Architecture (MYSEA) supports a multilevel secure (MLS) network and a
number of single level networks at different classification levels. The MYSEA MLS server is the focus of
policy enforcement. It implements a Dynamic Security Services mechanism (DSS) that can modulate
IPsec security attributes and MYSEA security services based upon administrator choices. Use of intrusion
detection technology on the unprotected single level networks can provide administrators with actionable
information to inform DSS choices.
 The objective of this thesis is to design an intrusion detection system (IDS) architecture that permits
administrators operating on MYSEA client machines to conveniently view and analyze IDS alerts from the
single level networks.
 A progressive set of analyses and experiments was conducted that led to a working
implementation of an IDS for MYSEA. Sensors are located on the single level networks. Their alerts are
fed into the MLS server, where single level databases are used to store and organize the data.
Administrators can login from the MLS LAN and examine IDS results, which may be used to derive new
DSS policies. A testing methodology was developed and functional tests were performed. Implementation
considerations for future extensions of this work are presented.

15. NUMBER OF
PAGES

169

14. SUBJECT TERMS Type Keywords Here
Intrusion Detection Systems (IDS), Information Assurance(IA), Monterey Security
Architecture (MYSEA), Global Information Grid (GIG)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTING AN INTRUSION DECTECTION SYSTEM IN THE MYSEA
ARCHITECTURE

Thomas F. Tenhunen

Civilian, Naval Postgraduate School
B.S., Chapman University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Author: Thomas F. Tenhunen

Approved by: Cynthia E. Irvine, Ph.D.
Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 The Monterey Security Architecture (MYSEA) supports a multilevel secure

(MLS) network and a number of single level networks at different classification

levels. The MYSEA MLS server is the focus of policy enforcement. It

implements a Dynamic Security Services mechanism (DSS) that can modulate

IPSec security attributes and MYSEA security services based upon administrator

choices. Use of intrusion detection technology on the unprotected single level

networks can provide administrators with actionable information to inform DSS

choices.

 The objective of this thesis is to design an intrusion detection system (IDS)

architecture that permits administrators operating on MYSEA client machines to

conveniently view and analyze IDS alerts from the single level networks.

 A progressive set of analyses and experiments was conducted that led to

a working implementation of an IDS for MYSEA. Sensors are located on the

single level networks. Their alerts are fed into the MLS server, where single level

databases are used to store and organize the data. Administrators can login from

the MLS LAN and examine IDS results, which may be used to derive new DSS

policies. A testing methodology was developed and functional tests were

performed. Implementation considerations for future extensions of this work are

presented.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
B. PURPOSE OF STUDY... 2
C. ORGANIZATION OF THESIS.. 4

II. BACKGROUND.. 5
A. MYSEA ENVIRONMENT OVERVIEW... 5

1. XTS-400 and STOP Operating System.................................. 6
2. Dynamic Security Services (DSS) ... 7
3. External Networks ... 8
4. Trusted Path Extension... 9
5. MLS HTTP Proxy Service .. 9

B. INTRUSION DETECTION SYSTEMS (IDS)... 9
1. Overview of an IDS .. 9
2. Snort ... 13

C. IDS ANALYSIS TOOLS... 15
1. Overview of IDS Analysis Tools ... 15
2. Basic Security Analysis Engine (BASE) 16

D. MYSQL PROXY SERVICE .. 17
1. Overview... 17
2. MySQL Proxy Service.. 17

E. EMERALD.. 17
1. Overview... 18

F. SUMMARY... 19

III. CRITERIA FOR SELECTION OF IDS COMPONENTS................................ 21
A. AVAILABLE IDS.. 21

1. General Requirements .. 21
2. Selection Criteria ... 22

a. Ranking Platform Compatibility................................. 22
b. Ranking Usability.. 23
c. Ranking Product Maturity .. 24
d. Ranking Support and Documentation....................... 24

3. SELECTION PROCESS.. 25
4. Selection Outcome .. 25

B. AVAILABLE DATABASES FOR STORING IDS SENSOR DATA.... 26
1. General Requirements .. 26
2. Selection Criteria ... 26

a. Ranking Platform Compatibility................................. 27
b. Ranking Usability.. 27
c. Ranking Support and Documentation....................... 28

3. Selection Process.. 28
4. Selection Outcome .. 29

 viii

C. AVAILABLE ANALYSIS TOOLS... 29
1. General Requirements .. 29
2. Selection Criteria ... 29

a. Ranking Usability.. 30
3. Selection Process.. 31
4. Selection Outcome .. 31

D. SUMMARY... 32

IV. REQUIREMENTS AND DESIGN.. 33
A. INTRODUCTION.. 33
B. CONCEPT OF OPERATION.. 33

1. Multiple IDSes using Single Repository 33
2. MySQL Protocol Analysis .. 36

C. REQUIREMENTS... 39
1. IDS... 39
2. Information Flow Control .. 39
3. Processes Running on MLS Server 40
4. System High Database .. 40

D. DESIGN.. 40
1. Preliminary Tests... 40
2. New Design for Implementation ... 45
3. Integration with DSS.. 47

E. SUMMARY... 48

V. IMPLEMENTATION AND TESTING... 49
A. INTRODUCTION.. 49
B IDS IMPLEMENTATION ON THE RED HAT 8 SYSTEM 49

1. IDS Sensor Installation (Snort) ... 49
2. PostgreSQL Server Installation .. 50
3. Web Application BASE Installation...................................... 51

C. IDS IMPLEMENTATION FOR THE MYSEA ARCHITECTURE......... 53
1. IDS Sensor Installation (Snort) ... 54
2. XTS400 Network Settings.. 54
3. PostgreSQL Installation .. 55
4. Basic Analysis Security Engine (BASE) Installation 56

D. ANALYSIS OF MYSEA IDS IMPLEMENTATION 57
1. IDS Sensor Authentication.. 57
2. PostgreSQL, BASE and Multilevel Access.......................... 58
3. PHP Integration with MYSEA Apache 59

E. FUNCTIONAL TEST PLAN AND REPORTS 61
1. Test Plan Objectives: Red Hat 8 Linux and XTS400

Environments... 62
2. Functional Test: Red Hat 8 Linux Environment 63
3. Functional Test Report: Red Hat 8 Linux Environment...... 64
4. Functional Test: XTS400 Environment 65
5. Functional Test Report: XTS400 Environment.................... 66

F. SUMMARY... 67

 ix

VI CONCLUSIONS AND FUTURE WORK ... 69
A. CONCLUSION ... 69
B. FUTURE WORK... 70

1. Labeling Data ... 70
2. MySQL Proxy Program.. 70
3. Read Down Support .. 71
4. PHP Implementation.. 71

APPENDIX A RED HAT 8 LAB INSTALLATION .. 73
A. INSTALLATION AND TEST TOPOLOGY... 73

1. Conventions used in this Documentation 74
B. INSTALLING SNORT ON DEBIAN 4.0 ... 75

1. Debian Operating System Installation 75
2. Support Software Installation... 76
3. Libpcap0.9.8 Installation ... 76
4. Snort Installation ... 77
5. Snort Rules Installation... 77
6. Finalize Sensor Installation... 78
7. Lokkit Firewall Installation.. 80

C. INSTALLING POSTGRESQL 7.4.18 ON RED HAT 8 81
1. Create System Accounts... 81
2. PostgreSQL 7.4.18 Installation ... 81
3. Post-installation Setup.. 82

D. INSTALLING BASE ON RED HAT 8... 86
1. Apache Installation.. 87
2. PHP4.3.11 Installation ... 88
3. BASE (Basic Analysis Security Engine) Installation 90
4. Unclassified BASE Installation... 90
5. Secret BASE Installation... 92

APPENDIX B XTS400 INSTALLATION PROCEDURES 95
A. INSTALLATION AND TEST TOPOLOGY... 95

1. Conventions used in this Documentation 96
B. INSTALLING SNORT ON DEBIAN 4.0 ... 96

1. Debian Operating System Installation 96
2. Support Software Installation... 97
3. Libpcap0.9.8 Installation ... 98
4. Snort Installation ... 98
5. Snort Rules Installation... 98
6. Finalize Sensor Installation... 100
7. Lokkit Firewall Installation.. 101

C. XTS400 NETWORK SETUP .. 102
1. Configure TCP/IP Parameters for Ether1 and Ether2 102

D. INSTALLING POSTGRESQL 7.4.18 ON STOP 6.3 109
1. Create Groups Named Postgres and Snort 110
2. Create Users Named Postgres and Snort.......................... 110
3. PostgreSQL 7.4.18 Installation ... 112

 x

4. Post-installation Setup.. 113
5. Configure PostgreSQL to Operate at Multiple Security

Levels ... 114
E. INSTALLING BASE WEB APPLICATION ON STOP 6.3 126

1. PHP 4.3.11 Installation .. 127
2. Recompile Httpd to Include PHP Module........................... 129
3. Httpd Installation ... 129
4. Test PHP... 130
5. BASE Installation... 130
6. Unclassified BASE Website Installation 133
7. Secret BASE Website Installation 134

APPENDIX C FUNCTIONAL TEST PLAN... 137
A. PRELIMINARY SETUP FOR FUNCTIONAL TESTING................... 137

1. IDSWakeup Installation ... 137
B. RED HAT 8 IDS ARCHITECTURE FUNCTIONAL TEST 138
C. XTS400 IDS ARCHITECTURE FUNCTIONAL TEST...................... 141

LIST OF REFERENCES.. 145

INITIAL DISTRIBUTION LIST ... 149

 xi

LIST OF FIGURES

Figure 1: MYSEA Environment.. 6
Figure 2: STOP Four-Domain Architecture [3]... 7
Figure 3: Generic Network IDS Placement .. 10
Figure 4: EMERALD Architecture [24] ... 18
Figure 5: Concept of Operations.. 34
Figure 6: MYSEA Architecture with IDS .. 35
Figure 7: Test1 Basic Proxy Test... 41
Figure 8: Daisy Chain Proxies ... 42
Figure 9: Test 3 Lua Injection .. 43
Figure 10: IDS Implementation Design.. 46
Figure 11: IDS Integration with DSS.. 47
Figure 12: Lab Setup ... 62
Figure 13: Lab Setup ... 74
Figure 14: Lab Setup ... 95

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1: Selection Criteria for IDS .. 25
Table 2: Selection Criteria for Database... 28
Table 3: Selection Criteria for Analysis Tools ... 31
Table 4: IDS1 Alerts Sent ... 64
Table 5: IDS2 Alerts Sent ... 64
Table 6: IDS1 Alerts Sent ... 66
Table 7: IDS2 Alerts Sent ... 66

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my advisors, Dr. Cynthia

Irvine and Thuy Nguyen, for their time, effort, and patience with their help over

the course of this project. Their expertise and guidance was invaluable and

without it, this project would never have been completed. I would also like to

thank Jean Khosalim for his technical assistance, time and patience going

through the installation instructions and test procedures.

This material is based upon work supported by the National Science

Foundation, under grant No. CNS-0414102. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science

Foundation.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Intrusion Detection Systems (IDS) are an important component of a

comprehensive defense in depth approach for securing information system

networks by looking for malicious activity on the network. The function of the IDS

is to watch and assess network activity without affecting that traffic. Data

collected by the IDS is sent to a database for further analysis by skilled security

analysts and system administrators. These analysts often use tools that can

parse the captured data into meaningful human readable formats. IDS can really

be viewed as a collection of three main software components, a sensor that

resides on a network segment assessing traffic, a database for storing the results

of traffic assessments in the form of alert data sent by the IDS, and an analysis

tool for examining the collected data.

Deployment of IDS sensors in a network at a single classification level is

straightforward. To monitor inbound and outbound network traffic sensors are

placed at the demarcation points of the enclave. Data sent from the IDS sensors

to a central repository for analysis provide analysts the capability to determine

the criticality of this data and take appropriate actions. Department of Defense

(DoD) networks have different classification levels, for example the NIPRNet

(Unclassified) and SIPRNet (Secret) are military networks that are separated by

a guard or physically separated. Data generated by an IDS on the NIPRNet

cannot be stored with data generated by an IDS on the SIPRNet since in both

cases the IDS data came from a sensor that carries the same classification level

as the network it monitored. This separation of data presents a problem when

analysts need to perform correlation analysis on alerts. With data separated by

classification level an analyst is really only working with a sub-set of data.

Combining the data would provide the analyst will a full set of data to work with,

which would give comprehensive results from analysis performed on the data.

 2

The Monterey Security Architecture (MYSEA) is an experimental multilevel

secure computing environment that can provide a common end-point between

networks of different classification levels [1]. In the MYSEA environment, a

multilevel secure operating system installed on an Intel hardware platform

provides isolation by enforcing Mandatory Access Control (MAC) policies. This

platform is the MYSEA server. A MYSEA server also acts as a redistribution

point for clients inside the MYSEA network that need to access resources such

as web and email.

Collecting and storing data sent by the IDS from the multiple networks at

different classification levels presents a unique challenge. Some of the data

contains the payload of the packet that triggered the alert. By default, the

classification of the alert is the same as the classification of the network from

which the alert was generated. Despite this challenge, there is also a unique

opportunity to have all of the alert notifications from networks at different

classification levels fused as actionable information. A unique component of the

MYSEA environment is its Dynamic Security Services (DSS), which can provide

a Quality of Security Service (QoSS) [2]. In particular, the current implementation

allows IPSec security associations [2] to be modulated based upon session

attributes and network conditions. The motivation behind a QoSS was to raise

the security level based on perceived network threats, but there must be a way to

identify these threats. Using an IDS and storing alerts for analysis will provide a

means to identify attacks that can threaten the network and if the attacks warrant

a change in IPSec security requirements the analyst can inform the administrator

for the DSS.

B. PURPOSE OF STUDY

The objective of this thesis is to study the best method for deploying an

Intrusion Detection System and setting up a central repository for alerts in a MLS

architecture. A secondary objective is to provide a method for the DSS

 3

administrator to view attacks to determine if switching to a different Dynamic

Security Services (DSS) security policy is warranted. This thesis examines the

following questions.

1. In the MYSEA environment, what is the best way to locate and

configure IDS sensors and a central repository to collect and store sensor data to

afford the system analysts with a complete picture?

2. If data cannot be stored in one central database due to unforeseen

complications what are reasonable alternatives?

The IDS field is very active with many feasible products ranging from open

source products to high-end innovative commercial products. To provide an

organizational framework, the following methodology is used in this research

effort. Background material will be established by conducting a review of existing

products and researching previous work in the field of intrusion detection.

General requirements coupled with selection criteria will be applied to a formal

selection process to cull IDS components appropriate for the prospective

architecture. A new architecture will be developed based on the current MYSEA

architecture for integrating the new IDS components that addresses security

issues concerned with moving data at different classifications in a MLS

environment. Proving the concepts will first take place by conducting experiments

on Linux systems that are similar to the XTS400 system [3]. These experiments,

if successful, will lead to the development of a functional prototype that can be

employed in the MYSEA architecture. To verify that the integration of the IDS

components functions correctly in the MYSEA environment, testing

methodologies will be developed to exercise individual components as well as to

exercise the entire suite as one functional unit. The results from this research

project will then be used to analyze the utility of the IDS components for

presenting a picture of what is happening on the network with respect to possible

attacks and how this data can be used to inform decision makers. .

 4

C. ORGANIZATION OF THESIS

Organization of this thesis is as follows:

Chapter I provides the motivation and purpose of this thesis, and

introduces the problem of implementing an IDS in a multilevel security

environment

Chapter II provides detailed background information on different

components of an Intrusion Detection Systems with a more in depth review of

Snort. Other topics covered include the MYSEA network, analysis tools used to

analyze captured data such as the Basic Analysis Security Engine (BASE).

Chapter III covers the selection process for choosing an IDS, database

and analysis tool that will be implemented in the MYSEA architecture.

Chapter IV covers the concept of operations and design of the entire IDS

system from sensors to its analysis tool.

Chapter V describes the implementation of the actual components on both

Red Hat 8 Linux system and a XTS 400 system running the STOP 6.3 OS. The

chapter concludes with the test plan and testing results for both environments

Chapter VI consummates the thesis with conclusions and future work.

 5

II. BACKGROUND

This chapter contains background information on the Monterey Security

Architecture (MYSEA), Intrusion Detection Systems (IDS), analysis tools used in

examining IDS data, and a proxy service for the open source database MySQL.

A. MYSEA ENVIRONMENT OVERVIEW

The Department of Defense (DoD) maintains physical separation between

networks of different classification levels. For example, there are the unclassified

NIPRNet and the secret SIPRNet. For both networks to exist in the same

enclave, each network must be built as a physically separated infrastructure,

therefore doubling equipment such as workstations, servers, routers, etc. The

Monterey Security Architecture (MYSEA) supports a common infrastructure for

security classification levels on a single network by using high assurance

components that enforce mandatory security policies [1]. This multilevel secure

network environment consists of both high-assurance components such as the

XTS-400 server running a secure operating system and low-assurance

commercial components. A trusted communications path is setup between these

components using the Trusted Path Extension (TPE) module. The TPE provides

a trusted path between users who are computing on common COTS operating

systems and MYSEA high assurance server. It should be noted that the TPE is

part of the distributed Trusted Computer Base (TCB) along with the MYSEA

server. All internal network traffic in the MYSEA environment uses IPSec[1].

Dynamic Security Services (DSS) provide a method for adjusting Security

Associations (SAs) for confidentiality and integrity managed by IPSec [2]. This

architecture also supports multiple external networks that are at different

classification levels.

 6

Figure 1: MYSEA Environment

1. XTS-400 and STOP Operating System

The keystone of the MYSEA environment is the XTS-400 platform running

the Secure Trusted Operating System (STOP) developed by BAE Systems. This

operating system can enforce Mandatory Access Control policies (MAC) to

enforce confidentiality and integrity. The MAC policies are based on the Bell and

LaPadula model [3] for confidentiality and Biba model [3] for integrity.

Enforcement of these policies on a single system allows for simultaneous

processing and storage of data at different classification levels by users with

different clearances [3].

To protect the security kernel, the STOP uses a method known as

“domains of isolation” [3] with the security kernel being at domain 0, the most

protected domain. Note that in most descriptions of such systems, these are

 7

known as privilege domains. Processes are restricted by domains and can only

communicate with domains of equal or lesser privileges. There are four domain

levels, 0 through 3. Level 0 is for the Security Kernel, level 1 for Trusted System

Services, level 2 for Operating System Services and level 3 for Application

Programs. Figure 2 shows a diagram of how the domains interact with each

other.

Figure 2: STOP Four-Domain Architecture [3]

2. Dynamic Security Services (DSS)

The Dynamic Security Services provide a method to balance protection for

communications in the MYSEA environment to meet external conditions. A

dynamic service allows the IPSec policy to be changed based on the state of the

 8

operating environment while preserving finite resources for the computer system

[2]. Currently to change the System Security Level and System Operation Mode,

IPSec policies on the DSS requires manual intervention. The adjustment of these

IPSec policies stems from John Horn's work with Dynamic Security Services [2].

Communication channels may service connection requests at different

classification levels using an appropriate cryptographic algorithm such as MD5,

SHA1, DES, and so on, in order to balance CPU load with the required level of

classification [2]. For example, if System Security Level is set to Low and System

Operational Mode is set to Normal then the AH policy would be set to use the

MD5 algorithm and the ESP policy set to use the DES algorithm. Escalating

either System Security Level or System Operational Mode would increase the

algorithm used by AH or ESP, or both. Ideally, it is more efficient to notify the

MYSEA server of changing conditions using an automated process. Prior work

by John Horn leaves this problem as future work [2]. There is also no method in

the MYSEA framework to monitor for the occurrence of network attacks. The

operator or the DSS needs to have an indicator to forecast network conditions.

An IDS can be tied in with the DSS to serve as that indicator.

3. External Networks

Depending on the physical location of a MLS environment, it may have to

communicate with single level networks at various classification levels. Figure 1

shows the MYSEA MLS enclave networked with the unclassified NIPRNET,

secret SIPRNET, and another arbitrary network, COALITION. One of the

functions of the NIPRNET is to handle normal Internet traffic for users in the MLS

LAN. Therefore, this network also poses the greatest risk with respect to

malicious traffic.

Interconnection of two networks at two differing classifications levels is

handled by the MYSEA server by enforcing MAC policies. Even though two

networks of different classifications levels terminate at the same physical server,

 9

the MLS server is capable of keeping network stacks at different classification

levels logically separated with high assurance, thus eliminating the use of a

guard or requiring physical separation.

4. Trusted Path Extension

The Trusted Path Extension (TPE) is a logical extension of the MYSEA

server. It is a small device attached to the client that provides a secure, non-

forgeable connection between the Trusted Computing Base (TCB) of the MYSEA

server and the user (see Figure 1). The TPE provides for user authentication and

establishing users’ session classification level [1].

5. MLS HTTP Proxy Service

The MYSEA server has a HTTP Proxy service that handles clients

requesting web pages of varying classification levels. A proxy server services the

requests of its clients by forwarding requests to other servers. On the MYSEA

MLS server, the HTTP proxy service handles all web requests from its clients. To

save time in writing a trusted application this project will take advantage of this

HTTP proxy service by using a web-based intrusion analysis tool. Thus, analysts

can log in on any workstation connected to a TPE and gain access to the IDS

analysis web site.

B. INTRUSION DETECTION SYSTEMS (IDS)

This section describes how an IDS functions and why they are used to

defend networks. There are several open source and commercial off the shelf

IDS products available. Chapter III will cover the criteria for choosing an IDS for

this project.

1. Overview of an IDS

An Intrusion Detection System acts like a sentinel with the ability to look

for activity that resembles reconnaissance, attempted system compromise, or

 10

other malicious activity [4]. An IDS’s job is to inspect the contents of network

traffic for possible attacks. IDSes are capable of parsing through network traffic

and comparing that traffic to known attack signatures. When IDSes discover an

attack, they can raise an alarm by sending out alerts.

In 1980, James P. Anderson described the notion of IDS in his paper

Computer Security Threat Monitoring and Surveillance [6]. The idea was to build

a better security audit tool designed more for the security administrator. Dr.

Dorothy Denning’s paper published in 1987, An Intrusion-Detection Model,

served as the first blueprint for designing an IDS [7]. Her model addresses a wide

range of threats from outside attackers to abuses by insiders.

IDS architectures consist of three different components, the sensors,

repositories, and analysis tools. A preferred architecture has each component

installed on separate hardware platforms connected by a high speed LAN, but

installation of all components on one platform is acceptable provided the

hardware resources can handle the load. Figure 3 shows a typical IDS

architecture.

Figure 3: Generic Network IDS Placement

 11

Effective monitoring of network traffic relies on sensor location. Sensors

are placed at strategic network locations that will allow it to see as much network

traffic as possible on that network segment. Sensors could be located in front of

firewalls, behind them, or on a special zone known as a Demilitarized Zone

(DMZ). A sensor placed in front of a firewall will see all of the network traffic on

that segment; however, the amount of network traffic could overwhelm the

sensor. Sensors behind a firewall or on a DMZ monitor filtered traffic that the

firewall allowed. Sensors ‘sniff’ network traffic by capturing all network traffic

through the use of a Network Interface Card (NIC) set in promiscuous mode.

Normally a NIC operates in non-promiscuous mode and only forwards

traffic up the stack if it is destined for the platform’s media access control (MAC)

address or it is a broadcast. This method cuts down on the amount of traffic

processed by the operating system. When operating in promiscuous mode, the

host will forward all traffic up the TCP stack. IDS sensors utilize this feature to

analyze all traffic that can be seen on the network segment to which they are

attached. A promiscuous NIC does not even require an IP address and usually

does not have one. This technique provides additional security for the sensor.

Communications between sensors and repositories takes place over a separate

maintenance network.

Analysis of network packets consists of one of two methods. The first

method identifies known attacks by looking for a distinct signature. Signatures

are unique lines of machine code or strings found in the payload of network

packets. For example, a common method to inject shell code uses repeated

occurrences of 0x90 in the payload, which is machine code for a NOP (short for

perform no operation). The use of numerous 0x90 in this example indicates a

signature known as a "nop slide". The other method of attack detection is

anomaly detection, which relies on complex statistics to build a set of rules.

These rules are used similar to signature rules since they form the basis for

generating alerts when possible attacks are detected. Analysts first create a

 12

baseline of the network to determine acceptable normal behavior. Any network

activity that falls outside of this acceptable behavior is flagged as an alert.

Neither of these methods is perfect, and they will create false positives

and false negatives. With respect to IDS, a false positive occurs when the IDS

signals that there is an attack when, in fact, no attack has taken place. This can

result from the use of poorly designed rules or from bad statistical measurements

of the network. There is another category of false positives that result when the

IDS detects a true attack but none of the systems in the network are vulnerable

to this attack. False positives raise unnecessary alarms that detract from the

purpose of using IDS. False positives can be managed by using well-written rules

and removing obsolete rules. On the other hand, false negatives occur when the

IDS misses events. Reasons for missing events can vary, from hackers using

evasion techniques, network packet loss on a busy network, or using improper

rules. Since false negatives equate to not seeing attacks, this creates a situation

that is not desirable. The only real counter measure to managing false negatives

is to follow all published best practices when deploying sensors.

A default configuration for IDS sensors results in the storage of alerts in a

file using some kind of unified log format. Log files could potentially hold

thousands, even millions of pieces of information. An analyst would be

overwhelmed trying to make sense of such log files. To overcome this problem,

sensor configurations allow for output software plug-ins that can send alerts and

logs to a repository. A central repository provides a place to keep alerts and logs

collected from all sensors. Collecting all the alerts at one location gives the

security analyst a complete picture of what is happening on the network. These

repositories are common relational database products such as MySQL, Microsoft

MSSQL and PostGreSQL. Using a relational database is more advantageous

than using log files since database products come with a wide assortment of

management tools such as automated backups and replication to other

databases.

 13

Analysis tools provide a picture of what is happening on the network.

Some IDS products come with their own proprietary tools, whereas open source

IDS have numerous add-on tools to choose from. The basic function of these

tools is to pull information from relational databases and compile it into

meaningful statistics, correlation information, charts, and graphs, therefore

making it easier for security analysts to make decisions about possible attacks.

2. Snort

Presently there are several open source and commercial-off-the-shelf

Intrusion Detection System applications. Over the last nine years, the market

has expanded and many of the industry leaders such as Cisco, McAfee,

Symantec, Juniper Networks, etc. have rolled out either an IDS or the next

generation Intrusion Prevention System (IPS). An IPS has the same capabilities

as IDS, but with the added ability to block the incoming attacks that it detects. [9].

An IPS is normally placed in line with the flow of traffic, which means all traffic

physically flows through the IPS. The IDS can only passively monitor traffic flows,

traffic does not flow into an IDS and back out to its destination. Snort’s first

release was December 22, 1998 by Marty Roesch, as a packet sniffer tool [4].

Snort began using signature-based analysis in January 1999 [4]. Today Snort is

the leading open source IDS and enjoys large community support. Most of the

support comes from Roesch’s security company Sourcefire.

Snort’s architecture is composed of four basic components:

• A network packet sniffer

• The preprocessor

• The detection engine

• Output plug-ins (alert file, log file, database)

A packet sniffer captures all of the network traffic off the wire. Snort’s

packet sniffer uses the libpcap library, a freely distributed library used for

 14

grabbing packets off a network. Most Linux systems come with libpcap installed.

The Windows operating systems use winpcap with Snort.

Packets grabbed off the wire are just raw packets, so the job of the

preprocessor is to perform sorting and checking to facilitate efficient analysis.

Snort's engine uses compiled code called preprocessors to normalize traffic and

examine the traffic for possible attacks or abnormal behavior. The first plug-in for

example is a protocol decoder. Decoding of all network traffic must take place

before passing it on to the other preprocessors and the detection engine. Other

plug-ins handle IP defragmentation, stateful inspection and application layer

protocols. The ability of preprocessors to find attacks or abnormal behavior saves

further processing time and valuable system resources. Creating new

preprocessors or extending existing preprocessors requires C programming skill

but documentation is available if either task is required.

After data leaves the preprocessor, it is handed off to the detection

engine. Snort is primarily a rules-based IDS. The detection engine runs the data

through a set of rules that look for distinct signatures. Data packets that match a

rule will trigger the alert pre-processor. Signature rules are categorized into

groups such as those that can identify Trojan horses, buffer overflows and other

application vulnerabilities. Rules have their own syntax so administrators must be

careful when writing additional rules. One syntax error in any rule will prevent the

Snort process from starting. Currently there is no alert process in place to verify

that Snort initialized properly. It is up to the administrator to check the systems'

log files to verify Snort initialization. If a rule prevented Snort from starting, the log

file will state which rule failed. Sourcefire normally releases new rules, which

have been tested and certified to work correctly, however anyone can design

new, customized rules.

By default, Snort writes its alerts to an alert file on the sensor. Alert and

logging output are easily configured using Snort’s configuration file. Some of the

most common output methods are to send alerts to a syslog process or to a

relational database such as MySQL or Windows MSSQL server. There are quite

 15

a few other ways to output alerts and security administrators may program their

own output methods such as sending alerts to non-supported databases or file

formats.

C. IDS ANALYSIS TOOLS

This section will cover IDS analysis tools. These tools play an important

role in helping analysts make sense of of the alert data gathered from various

IDS sensors.

1. Overview of IDS Analysis Tools

An IDS sensor could collect thousands, even millions of alerts depending

on the sensor’s location on the network. An interview was conducted on

November 14th, 2007, with two security personnel who work in the NPS

Information Technology and Communication Services (ITACS) center. The

objective was to ascertain how many alerts a production IDS sensor could

accumulate. An interviewee explained that the IDS database held over two

million alerts collected from just two sensors over a period of three months. Most

of the alerts were not malicious in nature or had reasonable explanations, but the

job of the analyst is to sift through these alerts looking for real attacks. This

illustrates why it is imperative to use some type of analysis tool to parse through

the voluminous Snort alert logs. Imagine trying to read an alert file with two

million entries. For ITACS, the analysis tool chosen is an open source application

called BASE, (Basic Analysis and Security Engine).

There are four important functions of IDS data analysis tools:

• Real-time alerting

• Attack Detection and Verification

• Incident Analysis

• Reporting

 16

Real-time alerting requires setting up tools designed to monitor log files for

specific patterns. In real-time alerting, the alert stream is examined for events

based on certain combinations that express increasingly complex situations [4].

Implementing these tools is beyond the scope of this project. The remaining

three factors take place offline on collected data.

Attack detection and verification is the process of separating false

positives from useful data. An IDS is not perfect because it either relies on rules

for known attacks or statistical data for anomalous attacks. Finding an attack

does not mean that is was successful, but the analyst should start an incident

analysis process. The process consists of determining when the attack occurred,

what the attack did, what systems were compromised and how was the attack

performed, i.e., what method was used, such as shell code injection, buffer

overflow, etc. Reporting on the incident gives decision makers an idea of the

impact on the systems that were compromised. Regular reporting also gives the

analyst repeated measurements over time to help fine tune the IDS by tracking

changes to the data.

2. Basic Security Analysis Engine (BASE)

BASE is one of the leading open source web-based applications used to

analyze IDS data. Written in PHP, BASE works in conjunction with the Apache

web server and the MySQL relational database [5]. It provides some excellent

features to assist with the task of working with a large amount of Snort alerts. A

graphical interface provides database searching and sorting of alerts by

protocols, time of day, unique alerts, and other miscellaneous queries. BASE can

display network stack Layer 3 (network) and Layer 4 (transport) packet

information. Graphs and charts provide for the viewing of statistics based on

specified parameters.

 17

D. MYSQL PROXY SERVICE

This section covers a new program released from MySQL, an open source

database company. To enhance functionality for database and application

developers, MySQL designed a proxy service that works with MySQL clients and

databases.

1. Overview

Proxy services are processes that service the requests of clients, by

forwarding requests to other servers. By acting as an intermediary, all service

requests appear to come from a single source. There are several types of

proxies, but this project is using a new database proxy developed by MySQL.

2. MySQL Proxy Service

The MySQL proxy service is situated between one or more MySQL clients

and a MySQL database server. Clients connect to the proxy using their regular

credentials, instead of connecting directly to the server. This proxy acts the same

as any other proxy process but with additional capabilities. Attached to the proxy

service is a Lua interpreter. Lua is an interpretive scripting language, with an

interpreter written in clean C, i.e., a common subset of ANSI C and C++. [10].

Using Lua scripts allows for flexibility in manipulating SQL queries before they

reach the SQL server. Some of the new capabilities include injecting new data

into a query, filtering, and even rewriting the query [8].

E. EMERALD

This section reviews EMEARALD, an intrusion detection and response

project developed by SRI International [24].

 18

1. Overview

Event Monitoring Enabling Responses to Anomalous Live Disturbances

(EMERALD) is an advanced IDS project intended to provide IDS for distributed

networks. The conceptual design is for a scalable surveillance and response

architecture for large dispersed networks [24]. The design employs numerous

monitors at various abstract layers in the network. The main advantage to

EMERALD's architecture is the ability to detect not just local attacks, but also

coordinated attacks such as distributed denial of service attacks or repeated

patterns of attack against multiple domains [24]. Figure 4 shows the initial design

of the EMERALD monitor architecture.

Figure 4: EMERALD Architecture [24]

A major strength of the EMERALD project is the design of components

that cover the main areas of event detection and response such as signature

detection, anomaly detection, and a correlation reporting method. EMERALD

eBayes component performs anomaly detection through the use of probabilistic

models of normal, attack, and anomalous behavior, and serves as the profile

engine (see Figure 4) [25]. EMERALD eXpert is a highly targetable signature-

analysis engine based on the expert system shell P-BEST [25]. This component

serves as the signature engine (see Figure 4) to detect known malicious attacks.

 19

The correlation component, Assessing Strategic Intrusions Using CIDF (ASIC),

uses an analysis method developed by SRI and ISI/USC to correlate intrusion

reports, discern large-scale patterns of attack, and infer the intent of the

adversary [25]. The independent sensors use a standardized communication

format, Common Intrusion Detection Framework (CIDF), as a means to

communicate information amongst other sensors. If one sensor is under attack, it

can communicate information about the attack to other sensors.

F. SUMMARY

Defense in depth for a unique environment like the MYSEA MLS network

requires implementation of an IDS. The challenges associated with such an

implementation lie with consolidating alerts from sensors that are at different

classification levels and using an analysis tool to parse through this alert data.

The next chapter describes the selection criteria used to choose an IDS for this

project.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. CRITERIA FOR SELECTION OF IDS COMPONENTS

To formalize a selection method for choosing an IDS system, it is best to

view an IDS in terms of its three major components: a sensor that reads network

traffic, a database for storing alerts and logs, and analysis tools. This chapter will

use the following approach to select the required components. The General

Requirements section will list a few broad requirements related to the scope of

the project in order to provide a starting point for generating specific criteria

required for each component. To help pare down the available choices the

selection criteria lists, in ranking order, criteria specific to this project. The

selection process will explain, based upon considerations of criteria, how

products were eliminated. The justification for selecting a product will be

explained in the final section.

A. AVAILABLE IDS

There are numerous IDS available for purchase from software companies

or freely downloadable as open source products.. Using the popular Internet

search engines, such as Google, to find IDS products yielded numerous results

touting new products. To choose an appropriate IDS sensor for this project, the

following steps were performed.

1. General Requirements

Before reading numerous reviews of IDS or establishing specific criteria,

general requirements based on the environment were established. These are

listed here. First, the project will require multiple IDS sensors to handle the

various single level networks that feed into the MYSEA architecture. To simplify

the project only one type of IDS will be selected, however, it is possible to use

multiple types of sensors. Second, the IDS sensors will not host a database to

store events but instead will forward events to another database system. Third,

the goal of this project is to establish a generic template for any future IDS

 22

products that would be used in the MYSEA architecture or any similar MLS

environment. Fourth, the project has a limited budget and no time to deal with

procurements. The procurement process would involve writing request for

proposals (RFPs) and other such documents. Performing this level of work is

beyond the scope of this project. Establishing these general requirements allows

for the development of specific selection criteria. Each selection criteria, except

for Open Source and Extensibility, will have a ranking system from 1 to 4, where

1 is the lowest rank and 4 is the highest. All of the criteria are equally weighted

and the two criteria, Open Source and Extensibility are either “Yes” or “No”,

binary items. The ranking system gives quantifiable measures to subjective

criteria.

2. Selection Criteria

• Open Source: The use of open source products saves time in

dealing with proprietary software licenses, contracts and

procurement processes. Open source products are freely

distributed, operational products and can usually be downloaded in

minutes. The term “open source” actually covers a wide range of

license agreements; the most common is the GNU General Public

License (GPL) [11]. Only open source IDS products that come with

an open source license will be considered for selection. This

ranking is a binary ranking of either a “Yes”, or a “No”.

• Platform compatibility: The IDS should be cross platform

compatible with many Operating System platforms. As a minimum,

the IDS should run on popular Linux and BSD distributions such as

Debian, Fedora, and FreeBSD.

a. Ranking Platform Compatibility

 1. Supports minimal complement of common operating systems

 2. Supports some common operating systems

 23

 3. Supports many common operating systems

 4. Supports most common operating systems

• Usability: Some software programs can be difficult to set up and

configure for its intended use. This criterion looks at items such as

how is the IDS setup and configured, if there are Graphical User

Interfaces (GUIs) or if operation requires using Command Line

Interfaces (CLIs).

b. Ranking Usability

 1. Very difficult to setup and use, has CLI only

 2. Moderately difficult to setup and use, has CLI only

 3. Little difficulty in setup and use, has CLI only

 4. Little to No difficulty in setup and use, has CLI and GUI

• Product maturity: One disadvantage to open source software is the

body of work may not be fully functional or have too many bugs in

it. Software of this nature is often labeled as ‘alpha’ or ‘beta’ code.

These designations are a software engineering reference to the

level of testing the program has undergone. The selection process

will take into account software version numbers to help determine

product maturity or the years in use. The reason for the ‘OR’

statement is that not all version numbers truly reflect the maturity of

the product. For example, Wireshark, formerly known as Ethereal,

is currently at version 1.0, but has been in use for about 10 years

and is one of the most popular network protocol analyzers used

today.

 24

c. Ranking Product Maturity

 1. Product is in alpha code or in use less than 1 year

 2. Product is in beta code or in use less than 2 years

 3. Low versioning numbers (< 1.0) or in use less than 3 years

 4. Versions above 1.0 or in use greater than 3 years

• Support and documentation: Using good documentation aids in

setting up a software program and using it correctly. Community

forums and online documents are the main supply for getting

support with open source products. Expert users of these programs

set up web sites for others to share their experiences and

knowledge. This selection criterion will factor in how much

documentation is available, the quality of the documentation and if

there are any tutorials that demonstrate how the product should

work.

d. Ranking Support and Documentation

 1. Very little documentation, no user forums or tutorials

2. Some documentation, has some user forums, no tutorials

 3. Good documentation, has user forums, some tutorials

4. Good to excellent documentation, active user forums, several

clear tutorials

• Extensibility: Having the source code allows the program to be

modified or permits inclusion of new features to satisfy design

requirements. It has not been determined at this point if

modifications are required. Thus, this is a good selection criterion

but is not highly weighted.

 25

3. SELECTION PROCESS

Selecting an IDS can be reduced to only searching for open source

products. A search of the Internet yielded some good sites that had information

on IDS, but sites that were specific to the product were only used in research

after reading reviews from non-biased sources such as www.linuxworld.com [12]

and Infosecwriters.com [13]. From this research there are two leading open

source IDS: Snort and Bro. Other open source products are used as Host-based

Intrusion Detection Systems, which are not applicable to this project. Each

product was set up in a small test environment to determine if they operated as

an IDS. Elementary tests such as port scans and pre-generated network

captures containing known exploits were used to determine usability. Each

product's web site was reviewed to determine the other selection criteria [14],

[15]. Table 1 summarizes the scoring for each system.

Selection Criteria
 Open

source
Platform
Compatibility

Usability Product
Maturity

Support &
Documentation

Extensibility

Snort 4 3 4 4

Bro 3 2 4 3

Table 1: Selection Criteria for IDS

4. Selection Outcome

Snort and Bro perform the same functions but they detect intrusions using

different methods. Bro relies on detecting intrusions based on traffic

characteristics and content, [16] while Snort relies on rules. Bro has the capability

to use Snort’s rules set. Both products are excellent IDS, but for this project,

Snort had higher scores in three of the selection criteria: platform compatibility,

usability, and support documentation. Snort can be installed on most Linux

operating systems, BSD and installed on Microsoft Windows. Bro ran well on

BSD but had some compilation errors on a Linux Debian test system, and does

 26

not support Windows. Both products were easy to setup but Snort was less

complicated to configure and operate. Bro is not a solution for non-Unix

environments and it was created with the intention that a UNIX expert would

operate it [17]. Snort’s logging includes methods to send events to files or

databases. Bro only supports sending events to a file. Other methods for storing

alerts are left to the administrator. Both web sites had plenty of documentation,

but Snort’s web site had more examples from the community than Bro’s web site

[14], [15].

B. AVAILABLE DATABASES FOR STORING IDS SENSOR DATA

The database is one of the most important components for an IDS

installation since it will need to handle all of the transactions that take place when

events, packets and alerts are logged. There are several open source relational

databases available such as the popular databases from MySQL and PostGres.

The general requirements section will list some broad requirements before

detailed criteria are listed in the Selection Criteria section. .

1. General Requirements

The rate at which the database will need to log transactions has not been

determined since stress testing is beyond the scope of this project. As a general

requirement, the database should be able to handle moderate transaction loads.

The first two selection criteria must be met. The remaining three criteria will use

the same ranking system performed in the IDS selection process.

2. Selection Criteria

• Compatible with chosen IDS: Currently Snort is capable of sending

alerts to several different types of databases, including MySQL,

PostgreSQL, Microsoft SQL Server, Oracle SQL server, and any

Unix/Linux Open Database Connectivity (ODBC) compliant

 27

database. Only ODBC compliant databases will be considered as

this is either a “Yes” or “No” criterion.

• Open source: To avoid license costs, only open source databases

will be considered for the project. This is either a “Yes” or “No”

criterion.

• Platform compatibility: The database application should support

many of the popular operating systems. At a minimum, it should be

compatible with the popular Linux operating systems such as

Fedora and Debian.

a. Ranking Platform Compatibility

 1. Supports minimal complement of common operating systems

 2. Supports some common operating systems

 3. Supports many common operating systems

4. Supports most common operating systems

• Usability: Some databases come with only Command Line

Interfaces (CLI), which mean all administration must be done using

CLI commands. To assist with administration tasks, any GUI tools

will enhance the product’s usability and make it a selection

candidate.

b. Ranking Usability

 1. Very difficult to setup and use, has CLI only

 2. Moderately difficult to setup and use, has CLI only

 3. Little difficulty in setup and use, has CLI only

 4. Little to No difficulty in setup and use, has CLI and GUI

 28

• User support and documentation: Database setup and

administration can be difficult; therefore, it is imperative that the

product have good documentation and support.

c. Ranking Support and Documentation

 1. Very little documentation, no user forums or working examples

2. Some documentation, has some user forums, no working

examples

 3. Good documentation, has user forums, some working examples

4. Good to excellent documentation, active user forums, several

clear examples

3. Selection Process

A search for open source databases reveals a plethora of choices. To

narrow the selection down to a few candidates only the more widely known

databases were considered.. Table 2 summarizes the selection criteria and uses

information from a comparison that was performed on five open source

databases [18].

Selection Criteria
 ODBC

Compliant
Open
Source

Platform
Compatibility

Usability Support &
Documentation

PostGreSQL 4 4 4

MySQL 4 4 4

MaxDB 4 3 4

Firebird 4 3 4

Ingres 4 3 4

Table 2: Selection Criteria for Database

 29

4. Selection Outcome

The entire list of database products in Table 2 meets the general

requirements and scored well in selection criteria, however MySQL and

PostGreSQL are the two most popular databases used with Snort [4]. MySQL

and PostgreSQL have also been used in past projects therefore; the element of

familiarity gives MySQL and PostgreSQL higher scores in usability. Preliminary

design work identified a need to use a proxy client to move data from the sensor

to the database. MySQL currently has a proxy client that is an alpha version [8],

so this extra program may save time and effort with the project. The final choice

was to use a MySQL database as the backend storage system.

C. AVAILABLE ANALYSIS TOOLS

Data analysis tools provide a GUI front end to the database that stores the

numerous alerts. These tools compute and display statistical information that

speeds up the process of sorting through all of the data.

1. General Requirements

Any analysis tool chosen must be able to parse through the Snort alerts.

This general requirement narrows the selection of analysis tools down to Snort-

compliant tools. The first two selection criteria described below must be met; the

remaining three criteria will be ranked similar to the other selection processes.

2. Selection Criteria

• Compatible with chosen database (MySQL) and IDS (Snort): Due

to Snort’s popularity, there are several analysis tools available to

choose from. Some are open source and some are commercial

products. Further selection criteria will narrow the list.

 30

• Open source: Only open source products will be considered for

selection. Some commercial companies offer free licenses for their

products, such as Aanvil [19], but these products are either limited

or the code is not available.

• Usability: Analysis tools must provide some basic statistics, sorting

and searching capabilities and must display detailed information

about the packet. These requirements are necessary to rapidly

process large amounts of information.

a. Ranking Usability

1. Provides little or no statistical or packet information, no sorting or

searching capabilities

2. Provides some statistical and packet information, has either

sorting and searching but not both

3. Provides statistical and packet information, has either sorting and

searching capabilities, but not both

4. Provides statistical and packet information, has both sorting and

searching capabilities.

• Uses a web interface (web site): Using a web site product allows

an analyst to access that product from any workstation that has a

web browser. This is not a set criterion, any open source product

that installs as a binary will be considered but website products are

preferred.

• Extensibility: To display new data in any additional database tables

or modified tables may require rewriting some of the code. The

programming language in which the product was written will be

taken into consideration. Web site products written in popular

 31

programming languages such as PHP or Perl will be considered

over web site products that use difficult or obscure programming

languages.

3. Selection Process

The selection for an analysis tool is bounded by three criteria, compatibility

with MySQL, compatibility with Snort, and it must be open source. Snort

documentation lists some open source products that are commonly used as

analysis tools [4]. Table 3 lists four products that were examined as possible

tools for this project.

 Selection Criteria

 Snort
Compatibility

MySQL
Compatibility

Open
Source

Usability Web‐
based

Extensibility

BASE 4 Yes

SGUIL 4 No

SnortSnarf 2 Yes

SnortALog 2 No

Table 3: Selection Criteria for Analysis Tools

4. Selection Outcome

The most popular tool in the list is the Basic Analysis Security Engine

(BASE) that has been an ongoing project for several years [20]. This product is

web-based and written in PHP, a popular web scripting language. SGUIL

(pronounced sgweel) is another popular product written in tcl/tk [21]. This product

is not a web site product and requires communicating with an agent installed on

the sensor. Due to the complexity and security considerations of the MYSEA

architecture, it is currently not feasible to fit this product into the project. The

remaining two products are written in Perl and do not provide any statistical

 32

functionality, instead they are used to format and view logs in a more usable

display. The choice for this project is to implement BASE as the analysis tool.

D. SUMMARY

Each component required to make a good IDS had suitable products that

would work well, but those chosen had essential features that meet the

preliminary project requirements. The next chapter will cover the concepts of

operation, the formal requirements and design specifications, therefore

illustrating how Snort, Mysql, and BASE, come together to make a complete

working Intrusion Detection System suitable for the MYSEA architecture.

 33

IV. REQUIREMENTS AND DESIGN

A. INTRODUCTION

This chapter will cover the concept of operations concerning how multiple

IDSes could function in a Multilevel Security architecture using a single

repository. An analysis of the MySQL protocol will be covered which is essential

to understanding the complexity of the problem when dealing with network nodes

that rely on a two-way communication protocol such as the MySQL protocol. The

requirement section will define how the data from the sensors must be handled to

satisfy MLS constraints. The design section will introduce a new architecture that

differs from the concept of operations but easily fulfills the requirements section

with only minor alterations.

B. CONCEPT OF OPERATION

1. Multiple IDSes using Single Repository

Each Intrusion Detection Sensor monitors the traffic on the network to

which it is attached and each network operates at a different classification level

such as ‘unclassified’, ‘secret’, and so on. When the IDS sensor sends an alert,

the data must be moved from a network at a particular classification level into a

database operating at the highest level, i.e., System High (SH). For example, if

IDS1, on an unclassified network, sends an alert, the data is sent from an

unclassified network to the MLS server’s unclassified port. At the MLS server, the

packet is received by an untrusted process labeled U in Figure 5. The untrusted

process labeled S in Figure 5 only receives traffic from an IDS attached to the

secret network. The process labeled ML in Figure 5 is a trusted process, which

can be configured with exemptions to receive data from processes at different

classification levels. The database is set at SH, therefore, information flow from

the network to the database is allowed since the classification setting of the

 34

database is higher than the processes U and S. To view the data, an analyst can

use any workstation attached to the MLS network such as the workstation

depicted in Figure 5. Since everything is in a SH database the analyst must

establish a session at SH before he can view any data. Figure 5 illustrates these

concepts in a block diagram format.

Figure 5: Concept of Operations

The trusted kernel provides logical separation by isolating processes U

and S and enforcing system-wide security policies. Processes U and S will act as

a listening service (server) and as a sender (client). When the processes receive

alerts, the alerts will be forwarded to the ML process. The Sys High process will

receive the data from the ML process and forward the information to the

database, which is set at SH. The physical placement of each component is

illustrated in Figure 6. Each IDS will be placed behind a router with respect to

traffic flow. In general, the placement of network components takes into account

the inbound and outbound flow of traffic. To illustrate the placement of network

components, consider the placement of a router and IDS sensor. If the sensor is

placed on the network where it ‘sees’ the traffic before the router does, this

 35

placement is in front of the router. If the router ‘sees’ the traffic before the sensor,

then the placement of the sensor is behind the router. The importance of

planning the placement of network components is to determine which component

will act on the traffic first, the router or the sensor. Because Snort and most other

IDSes cannot interpret encrypted data, placing sensors in front of the routers for

the SIPRNET network or COALITION network would be impractical because they

could not analyze this network traffic.

The database server will serve two functions. One will be as a central

repository for storing all alerts. The second function is to host the web application

BASE, which will serve as the IDS analysis tool. The analyst will be able to

access the BASE web site via an MLS HTTP proxy by establishing a session at

the level SH on any COTS client on the MLS LAN.

Figure 6: MYSEA Architecture with IDS

 36

2. MySQL Protocol Analysis

The purpose of this analysis is to illustrate the two-way communication

process that takes place between a Snort sensor and the MySQL database.

Section 1 discussed abstract processes that dealt with moving data from a

single-level sensor to a System High database. To keep the two-way

communication process intact for the MYSEA architecture poses a unique

challenge. With respect to information flow models, information can flow low to

high, however information flow from high to low is an issue because there is a

risk of sensitive information leakage. The analysis of the communication protocol

between the MySQL database and sensor will give insight into the problem of

database to client communications that move data from high to low.

Snort’s alert processes utilize the MySQL client program that is installed

on the sensor, to send alerts to a local MySQL database or across a Local Area

Network (LAN) to a remote MySQL database. In either case, the MySQL client is

responsible for establishing a connection with the MySQL database and acting

as a database client for the Snort processes.

The MySQL documentation cited in [23] describes the MySQL protocol but

in order to verify how the protocol functions when used by Snort to send data to

the MySQL database, a small test environment consisting of one sensor and one

database was set up. To capture the exchange of traffic between database and

sensor, the alerting mechanism on the sensor was triggered by performing a port

scan on the sensor. The alert data sent by Snort and reciprocal response data

sent by the MySQL database was captured and analyzed. The discussion that

follows is a compilation of observations made during the experiment coupled with

MySQL documentation.

When the Snort process is initialized, a function calls the locally installed

MySQL client to establish a connection with the database that is listed in the

Snort configuration file: snort.conf. In response to this connection request, the

database sends a ‘server greeting’ message containing attributes about the

 37

MySQL server such as version number, server capabilities and server status.

The MySQL client (on the sensor) responds to the greeting message with a login

request, passing the credentials for a username that has already been configured

in the Snort database resident on the MySQL server and stored in the Snort

configuration file resident on the sensor. If the credentials are validated, the

server responds with an OK message.

After the MySQL client receives the OK message from the MySQL server

in response to the authentication of credentials, Snort queries the database for

an existing ‘sid’ (sensor identification) and ‘hostname’ to either establish a new

identification if an old one does not exist, or to continue from the previously

established session using the existing identification.

The series of steps discussed, from connection request by the MySQL

client to establishing sensor identification, is used to generate a new persistent

session between sensor and database. The session between the MySQL client

on the sensor and the MySQL database remains open until the Snort process is

terminated or communications between the MySQL database and MySQL client

are interrupted. The reason for leaving the session open is to reduce the

overhead of establishing a new session every time an alert is sent to the

database.

Before sending an alert Snort will check for duplicate data by issuing a

SQL SELECT command that queries the Snort database looking for matching

alert signatures. If the alert signature already exists, then the event counter in the

EVENT table of the Snort database is incremented and only new information

such as source and destination IP addresses and the contents of the packet’s

payload are sent to the database. If the alert signature is new, then new rows are

created for the alert, including a new row in the SIGNATURE table. Information

that is sent to the database in an INSERT command includes the sensor

identification, time stamp, source and destination IP addresses, the signature

that defines the attack, for example ‘Portscan’ and the payload of the captured

network traffic that caused the alert. The final command sent by the MySQL

 38

client is a COMMIT command that instructs the database to write the new data to

the database. Every command sent by the MySQL client, such as BEGIN,

INSERT, or COMMIT, the server responds with one of the following: OK,

ERROR, or a Result Set in response to a SELECT command. The sequences

provided in this discussion illustrate the two-way communication protocol used by

the MySQL server and MySQL client.

Responses from the MySQL server to the MySQL client on the sensor

move from high to low, therefore, information in the return traffic will require

downgrading by a trusted process before sending the response out to the sensor.

Downgrading of classified documents is normally performed by a guard, which

may also sanitize the contents of the document [22]. A sanitization process could

be implemented to verify that return traffic contains only valid responses.

Responses such as OK or ERROR are trivial to verify by inspecting the payload

of the datagram. Responses to the SELECT command that contain data sets will

be more complicated because of the myriad possibilities of legitimate responses

coupled with the possibility that the payload could contain sensitive information.

Alert information stored in the database requires a security label. If the

data is not labeled then an analyst could accidently include sensitive data in an

unclassified report. The following is an example of a row of data from the Snort

database EVENTS table:

1, 29, 1, ‘2008-04-10 19:24:41’

sid, cid, signature, timestamp

The columns, delimited by a comma in this example, are the sensor

identification (sid), a counter (cid), an index to the signature table (signature), and

a timestamp (date). If this information was sent from IDS2 on the secret network

showed in Figure 6 then the information should be labeled ‘SECRET’. To

accomplish this labeling the table requires another column for the label and the

INSERT command sent by the MySQL client needs to be expanded to apply the

label. The following is an example of a row of data after the modifications:

 39

1, 29, 1, ‘2008-04-10 19:24:41’, SECRET

sid, cid, signature, timestamp, class_label

The task of expanding the INSERT command and labeling the data must

be performed by a trusted process on the MLS server to ensure the veracity of

the labels. A critical assumption is made that the database is benign and does

not alter the labels, otherwise the information cannot be trusted and the

architecture is flawed.

C. REQUIREMENTS

This section will cover the requirements to construct a working prototype

based on the issues disclosed in the concept of operations from section A and

Section B.

1. IDS

The sensor chosen for this project is an open source product called Snort.

The reason for selecting Snort was covered in Chapter III. One of the goals of

this project is to establish a template for implementing an IDS, therefore the only

modifications to Snort will be those required to make the product operational. For

example, the configuration file /etc/snort/snort.conf requires editing to set up

certain parameters to make the IDS functional. Some of the required parameters

are items such as what network to monitor and the authentication parameters for

authenticating to the database. These types of modifications will be allowed. The

implementation section will cover setting up the configuration file.

2. Information Flow Control

The communication flow between the database and sensor must not

violate MLS policies. Any information flowing from high to low would require a

guard process to verify that no classified information is leaked.

 40

3. Processes Running on MLS Server

There are two requirements for running new processes on the MLS

server. First, if the process is to be granted security and integrity exemptions the

process must be a trusted process. A trusted process is a program, which is

granted elevated privileges such as security and integrity exemptions. The

behavior of the process must be analyzed to verify that it does not violate the

overall intent of the system security policy. An untrusted process does not require

such an analysis; therefore, behavior of the process is unknown but may be

required to satisfy the system’s operational functionality. Second, any new code

introduced must be compatible with the STOP 6.3 operating system.

4. System High Database

The chosen database must be able to run on an operating system that will

allow it to run as a system high database in the MLS architecture. Snort supports

various ODBC compliant databases.

D. DESIGN

This section covers the design process based on the concept of

operations and requirements sections. Preliminary tests using a small Linux

environment were used to validate some concepts to help with the design

process. Results from these tests are included in this section.

1. Preliminary Tests

A small network consisting of three Debian 4.0 Linux systems was

configured to prove some concepts that were described in the concept of

operations. One system was configured as a sensor, one as the database server

and the last one was a simulated XTS system, which did not emulate any MLS

capabilities.

 41

To assist with moving traffic between processes U, S, ML, Sys High, and

the System High database (see Figure 5) the MySQL Proxy program was

researched and tested as a possible solution. A proxy server services the

requests of its clients by forwarding requests to other servers. A proxy service

can act as client by sending requests and as a server by accepting requests. The

MySQL Proxy program performs similarly to a standard proxy program however;

the MySQL Proxy program only handles communications between MySQL

clients and MySQL databases using the MySQL protocol.

The first test was to install one proxy on a Debian 4.0 Linux system

simulating an XTS and observe alerts transitioning from the IDS sensor to the

database via the proxy. Figure 7 shows the network layout for the first test.

Results of the test were satisfactory; therefore, the second test was performed.

Figure 7: Test1 Basic Proxy Test

Moving data from process U to process Sys High would require using

multiple MySQL proxies therefore the second test experiments with using the

proxies in a daisy chain configuration. Figure 8 illustrates the setup of two daisy-

chained proxies.

 42

Figure 8: Daisy Chain Proxies

To create the daisy chain between the two proxies requires Proxy 1 to be

configured to send data to Proxy 2, which has been configured to use the local

host address 127.0.0.1 and port number 5050. Proxy 2 then sends the data to

the external database server at IP address 192.168.100.4. The second test was

successful and demonstrated data moving from the sensor to the database via

the two proxies.

The third test utilizes MySQL Proxy’s built in Lua interpreter, which has the

capability to monitor and change the contents of MySQL packets. Lua is another

interpreted scripting language, similar to Perl or PHP [10]. Lua can be installed

as a separate program but the developers of MySQL Proxy compiled the

interpreter into the MySQL Proxy program [26]. Adding Lua to the MySQL Proxy

program gives developers the ability to write scripts that can modify or monitor

SQL statements as the data stream flows between client and server. For this

test, a Lua script was written to perform a simple SQL injection by adding another

INSERT command to append a classification label to the data being inserted.

Figure 9 shows the layout for the third test.

 43

Figure 9: Test 3 Lua Injection

This test also required a small modification to the Snort database schema

to include the additional data field for the label. The results from the third test

were satisfactory. This series of tests demonstrated that using one or more

MySQL proxies to move data between the required processes U, S, ML, Sys

High and SH database appears to be a feasible solution.

One constraint on any possible solution is porting new code to run on the

STOP 6.3 operating system. This OS is similar to Red Hat 8 in regards to the

libraries supported and the kernel programming interface. To determine if a new

program might compile on the STOP 6.3 OS it is first compiled on a Red Hat 8

system. The caveat however is that any compilation must use only the base Red

Hat 8 image. This means there cannot be any foundational upgrades performed

to the Red Hat 8 operating system such as upgrading kernel code because this

would move the version level away from the original level.

The fourth test was to compile the MySQL proxy code on a base Red Hat

8 system. To complete the configuration phase of the compilation process a few

libraries were installed such as glib-2.6.0, libevent-1.3e, lua-5.1.3 and the glibc

 44

package was upgraded from 2.2.9 to 2.3.2, which was the last version of glibc

configured for Red Hat 8. Compiling MySQL proxy on Red Hat 8 failed.

Compilation of the MySQL proxy requires MySQL client and development

files greater than version 5.0, which is not supported on Red Hat 8. The glibc 2.4

package is also required but this package requires kernel 2.6.9. When executing

'make' the first compilation error appears in mysql-proxy.c at line 194 with the

error message, “structure has no member named org_name.” Since there were

only five errors in this file of this type, the errors were resolved by commenting

out the offending lines of code. The code was not vital because it only printed the

names of the authors and their contact information. Re-running 'make' compiles

mysql-proxy.c but yields new compilation errors in the file network-mysqld.c. Four

variables were not found probably due to references to an incorrect version of a

header file. The same source code was successfully compiled on Debian 4.0 by

installing the following packages:

pkg-config, liblua5.1-0, liblua5.1-dev, libevent-dev,(from .deb package),

libevent1, libglib2.0-0, libglib2.0-dev, libmysqlclient-dev, libncurses5-

dev_5.5-5_i386.deb, libreadline5-dev_5.2-2_i386.deb

Due to the compile errors, kernel and library requirements, and the fact

that the code is only in the alpha stage of development, a determination was

made that it was not feasible to try to alter the code to make it conform to Red

Hat 8.

Despite the fact that the Proxy code performed well on the Debian 4.0

systems, and the fact that it cannot run on Red Hat 8 means there is a high

probability it will not run on the STOP 6.3 operating system. Another issue that

must be considered is the trustworthiness of the code. The proxy code consists

of 19 files and over 12000 lines of code, none of which has been examined to

determine if the code will always perform correctly. The level of the code is only

in the alpha stage of design, which presents another concern for using this code.

 45

These two factors prompted a change in the design strategy that will differ from

what was covered in the concept of operations.

2. New Design for Implementation

The first change from the original concept of operations was to switch the

database software from MySQL to PostgreSQL. The primary reason for the

change is that the new STOP 7 version comes with PostgreSQL 8.1 installed,

however this version level of PostgreSQL is too high for STOP 6.3 therefore the

PostgreSQL version will be 7.4.18, a version compatible with Red Hat 8. The

Snort product includes a SQL script for creating the schema required for the

Snort database for both MySQL and PostgreSQL and is fully compatible with the

Snort sensor. The analysis tool BASE is also configured with full PostgreSQL

support. Taking into account that future versions of STOP will support

PostgreSQL along with the PostgreSQL compatibility with the IDS components,

switching database software will provide a more stable implementation for this

project.

Another major change is the elimination of the external database server

and external web server. These components will be hosted on the XTS400 and

will be constrained by MAC policies enforced by MYSEA trusted processes and

STOP OS itself. The IDS will communicate directly with the databases instead of

communicating through a proxy. Even with PostgreSQL, there is still a

requirement to provide two-way communication between the database and the

sensor’s database client. Figure 10 illustrates the new design that satisfies the

requirement to use multiple IDS sensors in a MLS architecture.

 46

Figure 10: IDS Implementation Design

When a Snort sensor either is initialized or sends an alert it will invoke the

PostgreSQL client that is installed on the sensor. Reconfiguration of the network

ports on the XTS400 to match the security and integrity level of each

PostgreSQL instance will allow the IDS to communicate with their respective

PostgreSQL databases. There are databases at each classification level

because there is no trusted component to label or fuse the data as it is received.

This design requires two instances of PostgreSQL and two separate BASE web

applications.

Access to the BASE web application is through the Apache web server

application ‘httpd’ that is spawned by the SSS when an analyst makes an HTTP

request. All data queries are invoked by the analyst using the PHP web pages

that comprise the BASE application. In turn, the PHP interpreter makes a call to

the PostgreSQL client to execute the requested SQL query and returns the result

 47

set to be rendered in the PHP pages as readable data for the analyst. Even

though the alert data are separated, the analyst has an expedient access method

to the data using web browsers. However, the analyst will have to perform

manual correlation of data by generating reports and comparing results.

3. Integration with DSS

Figure 11 is a conceptual design that illustrates the use of email to notify

the DSS administrator with IDS reports. The actual implementation of this

approach is outside the scope of this thesis but the design is presented to

demonstrate how an analyst could report the status of network activity to the

DSS administrator.

Figure 11: IDS Integration with DSS

 48

The MYSEA server already supports the open source email program

‘send mail’ to provide email capability to the users on the MLS network. Since the

analyst is working from a COTS client, he could generate IDS reports using

information from the BASE application and send those reports to the DSS

administrator via email. Reports sent to the DSS administrator would be

categorized based on urgency. A string of text placed in the subject line of the

email would identify the urgency level such as “Daily Status Report” for routine

operations or “Emergency Action Report” for a critical alert that requires a

response. Critical alerts would also trigger an alarm on the DSS administrator

console.

In the current MYSEA implementation, the DSS administrator can only

access email from a COTS workstation on the MLS network, not from the system

console. Further investigation is needed to determine the changes to the current

MYSEA code to allow the DSS administrator to receive IDS reports via email at

the console.

E. SUMMARY

This chapter covered an analysis of the original design concept that

resulted in alterations to the design due to unexpected ‘cutting-edge’ software

conflicts with the older STOP system. The new design incorporates a few

compromises such as splitting out the database repositories, but overall provides

a viable functional prototype that can be fully incorporated into the MYSEA

environment after the PostgreSQL processes are ported to use the MYSEA

socket interface as explained in the future work section in Chapter VI.

The next chapter, Implementation and Testing, will cover the installation

and configuration of these components in two different environments: that of Red

Hat 8 Linux, and for the XTS400. After the IDS components are installed, the

final part will cover functional testing.

 49

V. IMPLEMENTATION AND TESTING

A. INTRODUCTION

This chapter will review the implementation of the IDS components:

sensors, database, and analysis tool, on the Linux Red Hat 8 system and

describe the changes required to integrate all of these IDS components within

the MYSEA architecture. The analysis section documents problems encountered

during the implementation phase for the MYSEA architecture. The chapter

concludes with a functional test plan that was designed and used to exercise the

entire suite of components to verify that all components function as a coherent

Intrusion Detection System. Appendix A and Appendix B provide detailed

instructions for implementing these IDS components.

B IDS IMPLEMENTATION ON THE RED HAT 8 SYSTEM

This section covers the standard implementation of the IDS components

on the Red Hat 8 Linux operating system. The reason for using the Red Hat 8

system is covered in Chapter IV, and is to use an OS that is compatible with the

STOP 6.3 operating system with respect to the version of the operating system’s

kernel and supported libraries. The two main components that will be installed on

Red Hat 8 are the PostgreSQL database and the BASE web application. The

Snort sensor was, installed on a separate machine.

1. IDS Sensor Installation (Snort)

The detailed installation of Snort on the Debian 4.0 operating system is

covered in Appendix A and Appendix B. The Debian operating system was

installed with the minimal libraries and programs required to create a functional

Linux operating system, which means there were no graphical user interfaces

(GUIs), or any other gratuitous services that could present attack vectors. After

the OS was installed, other required software programs were added such as the

 50

GCC compiler, PostgreSQL client and the libpcap library, which is a library

required to support Snort’s packet capturing functions.

Snort version 2.8.0.1 was installed using the source code obtained from

www.snort.org. This was accomplished using the standard Linux installation

method of running the ‘configure’ script then the ‘Makefile’ script and concluding

with ‘make install’, which places the binary ‘snort’ into the ‘/usr/local/bin’ directory.

Completing the Snort installation required editing the Snort configuration file

‘snort.conf’ to enable parameters that determine items such as what network

space to monitor, where to send alerts, and the location of the directory

containing Snort rules. As a security measure, the open source firewall ‘lokkit’

was installed and configured to allow only the required ports for communication

between PostgreSQL client and PostgreSQL server.

2. PostgreSQL Server Installation

The installation of PostgreSQL 7.4.18 server used source code obtained

from www.postgres.org. The installation followed the standard Linux installation

method of running the ‘configure’ script, followed by ‘Makefile’ script, and

concluding with ‘make install’, which installed the binaries to ‘/usr/local/pgsq’ and

other subdirectories under the ‘pgsql’ directory. Before the PostgreSQL server

could be started, a database cluster was created by running the initialization

program called ‘initdb’ with a directory location as an argument. A database

cluster is a collection of databases that are managed by a single server instance

[33].

To satisfy the design requirement to use separately managed databases

for storing alerts, this implementation required two instances of PostgreSQL

server: one instance for an unclassified Snort database, and another instance for

the Secret snort database. Creating additional PostgreSQL instances required

initializing additional database clusters. To simulate the PostgreSQL

implementation that will be required on the STOP 6.3 OS, two database clusters

were created: ‘/var/postgresql/unclass_data’, and ‘/var/postgresql/secret_data’.

 51

Each database cluster contained two configuration files that required editing. The

first file, ‘postgresql.conf’, is used to establish various network parameters such

as those to allow TCP/IP connections and to set the port number for TCP/IP

communications. Each database instance used a distinct port number. The

unclassified database used port 5433 and the secret database used port 5434.

The default port for PostgreSQL is 5432.The second file, ‘pg_hba.conf’, is used

to set the client authentication method for local and remote connections.

The pg_hba.conf contains a synopsis of the authentication methods,

which are also covered in the PostgreSQL documentation. Authentication for this

lab experiment used the MD5 method. This method compares an MD5 hash of

the stored password in the PostgreSQL pg_shadow catalog [32] and the hashed

password that is offered by the PostgreSQL client installed on the sensor. Issues

with MD5 and other authentication topics are covered in section C. To create

databases for the Snort sensors required running a script called ‘createdb’,

however, creating the database was performed by the intended owner of the

database to ensure proper permissions. For this reason a Red Hat 8 system user

called ‘snort’ and a PostgreSQL database user called ‘snort’ were created just for

the purpose of creating a database called ‘snort’. The schema for the database

was generated by running a SQL script included with the Snort distribution. After

the schema was created, the databases were ready to receive alerts from their

respective sensors.

3. Web Application BASE Installation

The Basic Analysis Security Engine (BASE) is a web application written in

PHP with cascading style sheets to provide the web application with some

uniform styling. BASE takes advantage of a database abstraction library called

ADOdb, written in PHP, which is designed to increase performance between the

database and web application [27]. Both of these products use the PHP scripting

language interpreter, which needs to be installed and configured to work with the

Apache web server.

 52

There are three methods for installing the PHP interpreter to function with

the Apache web server. One method will statically embed the PHP interpreter

into the Apache binary (httpd), which is the fastest way to run PHP because both

the PHP binary and httpd binary load into memory as one application. The httpd

binary will increase in size by as much as five times its original size depending on

the PHP options that were installed at compile time. The second method

compiles PHP as a Dynamic Shared Object (DSO) module, which provides a

way to build PHP as a separate binary, but links it to the httpd binary to load at

run-time into the memory space of the httpd program. The final method uses

PHP as a Common Gateway Interface (CGI) binary. This method does not

integrate into the Apache executable file httpd but does require specific

configuration settings in order to work securely and correctly.

The DSO method was chosen for the Red Hat environment based on

modularity considerations. The main advantage in using the DSO method is that

if PHP requires recompilation to add additional features or upgrades, only the

PHP binary is recompiled, not the httpd binary. When the static method is used,

upgrading PHP requires recompilation of the PHP binary and the httpd binary.

After compiling Apache to use DSO modules and installing PHP, the

BASE web sites were setup under the default Apache root directory called

‘htdocs’ that is used for serving web pages. Two BASE web sites were

configured: one to access the unclassified PostgreSQL database and another to

access the secret PostgreSQL database.

To finish the BASE installation required accessing the BASE web site’s

setup.php web page using a web browser from either the local server or any host

that can access the Red Hat 8 server. This setup page is used to fill in

parameters that will be written to a configuration file called base_conf.php.The

setup is only performed once to initialize these parameters and create six new

tables in the Snort database. After the setup is complete, the login page was

displayed for the BASE web site. After logging in using the user name snort, the

home page displayed a plethora of options for viewing and displaying alerts.

 53

C. IDS IMPLEMENTATION FOR THE MYSEA ARCHITECTURE

This section covers installation of the three IDS components in the

MYSEA architecture. The database software PostgreSQL and web application

BASE were installed on the STOP 6.3 operating system, which is the base for

the MLS server. The MLS server manages objects by enforcing MAC policies on

every object, e.g., users, files, directories, and processes. Users can change

their security and integrity level by invoking the Secure Attention Key SAK (Alt+

SysReq), and then entering a security level and an integrity level. When working

with objects the level of the object must be taken into account. A good rule of

thumb when dealing with objects is knowing the Bell-LaPadula model for security

(no write down, no read up) and Biba model for Integrity (no read down, no write

up).

The STOP 6.3 OS employs several levels and categories for security and

integrity which gives developers flexibility in creating various classification levels.

This installation is only concerned with the following five classification levels:

• min:oss - Defined as security level 0 and integrity level 3 with all

integrity categories enabled. The main directory structure of the OS

is set at this level.

• min:il3 - Defined by the MYSEA developers as SysLo (System

Low), this is the setting for the MYSEA directory structure

/usr/local/MYSEA and MYSEA web directories /home/http.

• sl1:il0 - Defined as security level 1, integrity level 0, and is also

defined as SIM_UNCLASSIFIED in the MYSEA architecture. This

setting denotes the classification level ‘simulated unclassified’ for

any object or session that is set to this level.

 54

• sl5 sc1:il0 - Defined as security level 5 with category 1 set, and

integrity level 0. This level serves as the SIM_SECRET level to

denote the classification level ‘simulated secret’ for any object or

session that is set to this level.

• sl15 sc0…sc63:il0 - Defined as security level 15 with all security

categories set, and integrity level 0. This level serves as the

MYSEA system high level.

1. IDS Sensor Installation (Snort)

The implementation for Snort was the same as the installation discussed

in Section A; therefore, the sensors are reused for the MYSEA architecture. Only

the configuration file ‘snort.conf’ required changes to reflect different parameters

such as database IP address or port numbers.

2. XTS400 Network Settings

The XTS400 server used for this implementation had four physical

network ports. One port is used for the MYSEA MLS network and two ports are

used to simulate two single-level networks: unclassified and secret. The security

setting for the MLS port was set to the maximum level. The reason for the

maximum setting was to prevent application processes such as Apache direct

access to the NIC. Users establish a classification session using the TPE

installed on the client. Sessions are managed by the Secure Session Server

(SSS) to allow for all possible session levels.

Currently there is no MLS routing or session server for hosts connected to

the single level network ports. To allow TCP/IP communications between the

sensors and their respective databases the security level of two network ports

were reconfigured to match the security level of the two PostgreSQL instances.

Ethernet device one (/dev/ether1) is set to sl1:il0 (SIM_UNCLASSIFIED) and

 55

Ethernet device two (/dev/ether2) is set to sl5 sc1:il0 (SIM_SECRET). This

allowed the PostgreSQL instances to offer database services running at these

two different classification levels.

3. PostgreSQL Installation

The installation procedure for the PostgreSQL server on the STOP 6.3 OS

is similar to those for Red Hat 8 and were performed as the user ‘admin’ at level

min:oss, which means the newly installed directories and binaries are at the level

min:oss. The database directories /var/postgresql/unclass_data and

/var/postgresql/secret_data, required for the database clusters, were created

using STOP’s file manager program, to set MAC and DAC permissions on these

directories. The unclass_data directory is set to sl1:il0 and the secret_data

directory is set to sl5 sc1:il0.

The database initialization on the Red Hat 8 system could not be

performed using the system account root because that method is not allowed by

the PostgreSQL process, therefore a non-privileged account was created to

initialize database areas and run the PostgreSQL process. The STOP operating

system does not support the concept of a root user, but instead of having the

default account admin initialize the databases and run the PostgreSQL

processes a lesser privileged account called 'postgres' was created using

STOP's account management program.

The remainder of the installation followed the same steps as the Red Hat

8 installation. The configuration files had to be edited, the snort user and snort

database must be created. Performing these steps required being at the

applicable classification levels.

To avoid having to start the databases manually, two daemons were

created using STOP’s daemon editing program. When the databases were

completed, a quick test using the locally installed PostgreSQL client ‘psql’ was

used to ensure connectivity and that the databases were ready to receive data.

 56

4. Basic Analysis Security Engine (BASE) Installation

Implementing PHP on STOP 6.3 as a DSO module, which was the

method performed in the Red Hat 8 environment, was not possible due to

modifications performed on the Apache source code. Apache was ported to the

MYSEA environment to work in conjunction with other MYSEA components. To

compile the DSO module PHP uses a support program from Apache called

‘apxs’, which simplifies the creation of DSO files for Apache modules [28]. To

compile PHP as a DSO module Apache must have been compiled with the

module ‘mod_so’ enabled. This is checked by the PHP configuration script via

the apxs support program. To manually check to see which modules are installed

the httpd program is executed with the ‘-l’ option, for example, enter ‘./httpd -l’ at

the command prompt, press the enter key then check the output. One line of the

output will contain the string mod_so.c, which indicates Apache was compiled

with the dependent module mod_so. The apxs script performs this same

procedure programmatically then performs a string match on the output. If the

string mod_so.c is not present, the script fails outputting an error that Apache

was not compiled with mod_so enabled.

Performing this check on the altered httpd binary file yielded no visible

output. Without the proper output, the apxs support program fails, which in turn

causes the PHP configuration script to fail. To circumvent this issue PHP was

compiled as a static module. A static compilation of PHP embeds the PHP

interpreter into the httpd binary program. Both of these methods, static link and

DSO, have positive and negative aspects that will be examined in the next

section.

Two directories were created to support the BASE web application

(/idsdemo/base_unclass, /idsdemo/base_secret) under the Apache root directory

/home/http/htdocs. Using STOP’s file management program the proper security

and integrity levels are applied to the separate directories. Completing the

installation required using a web browser on a client machine that has the TPE

 57

program installed. First, a user session was set to ‘SIM_UNCLASSIFIED’ and

then the URL for the BASE setup page for the base_unclass web site was

entered into a web browser. This web page instructs the user to provide various

parameters then finalizes the installation. The user session was changed to

SIM_SECRET and then the URL for the base_secret site was entered into a web

browser to perform this same procedure at this level. When both sites are

configured, there are two identical web applications with one application for the

unclassified data and one application for the secret data.

D. ANALYSIS OF MYSEA IDS IMPLEMENTATION

This section will conduct an analysis of issues that were identified during

the implementation of the IDS components in the MYSEA architecture. These

issues are deferred for future work but are presented in this section to provide

some insight. The main issues to be covered are sensor authentication, PHP

access to PostgreSQL and PHP integration with Apache.

1. IDS Sensor Authentication

PostgreSQL server provides several authentication methods from the

simple unsecure ‘trust’ authentication method, which requires no password, to

the highly secure Kerberos authentication method. This implementation used the

MD5 encrypted password method as a middle ground solution. Using Kerberos

requires an authentication server, which the MYSEA architecture currently does

not employ. Due to the weakness of the MD5 protocol and because the way in

which it was implemented in PostgreSQL, MD5 should not be a long-term

solution.

The MD5 authentication methodology stores a hash of the user’s

password in the pg_shadow table, which is part of the system catalog and is not

accessible by public accounts [32]. When the hash is generated, the user’s name

is used as the salt vice using a randomly generated salt [29]. Most PostgreSQL

implementations tend to use the username ‘postgres’ as the account name

 58

during initialization of database clusters and as the owner of the PostgreSQL

processes. Snort implementations tend to use the word ‘snort’ as the owner of

the snort database. Any hacker who compromised a sensor or realized there are

active communications between a Snort sensor and a PostgreSQL database

could possibly have two salts, which would allow for easier breakage of the hash

once it was retrieved.

Another security issue with IDS sensor authentication is the storage of

passwords in the snort.conf configuration file. One section of the snort.conf file

stores database connection parameters such as IP address, port number,

username and password. If a hacker gains access to a sensor as root, they now

know one password that will permit access to the remote Snort database. There

is currently no real solution for this security hole.

2. PostgreSQL, BASE and Multilevel Access

Accessing a PostgreSQL database is performed by using client software

that utilizes the PostgreSQL protocol. PostgreSQL software installation includes

a client named ‘psql’, which is normally used for accessing the databases.

Making a connection consists of invoking the program and passing in a user

name and password as minimum arguments. All authorized accesses to a

particular database are treated as read/write access unless specific permissions

have been established at the table level.

The BASE web application uses the resident ‘psql’ client installed on the

STOP 6.3 system to service SQL queries embedded in the PHP scripts that

comprise the BASE application. When an analyst establishes a SIM_SECRET

session, that analyst has read/write access to the base_secret web site but also

has read access to the base_unclass web site. If the BASE authentication

method (Step 3 of 5 from the BASE setup page from Appendix A and Appendix

B) is being used then the first page of either BASE web site is a login page that

validates given credentials based on a set of established credentials stored in the

Snort database. When the analyst enters credentials for the base_unclassified

 59

web site, the return will be a PostgreSQL database connection error. The reason

for the error is the enforcement of the MAC policies. This behavior can be

duplicated locally on the XTS400 by logging in as ‘postgres’, setting the security

and integrity levels to <sl5 sc1:il0>, and attempting a login to the unclassified

database using the ‘psql’ database client program. The output error will be

identical to that viewed in the web page.

To provide true MLS support an analyst should be able to view the

contents of a database in read only mode that is at a lower security level and

equal or higher integrity level than the established session level. Currently

analysts will only be able to view data whose level equals the established

session level.

3. PHP Integration with MYSEA Apache

A standard Apache installation is configured to run the httpd process

under a parent process, which forks a number of child processes to handle

incoming HTTP requests. Among the resources for this configuration are memory

space for the parent process and memory space to handle new connections.

When PHP is integrated into Apache the memory usage increases based on the

request of dynamic content, i.e., PHP web pages. PHP is allocated memory

using the malloc (memory allocation) function and uses the allocated memory

until the PHP process is terminated.

The MYSEA implementation of Apache utilizes the same approach used

by inetd daemon to handle HTTP requests. When a HTTP request is received

from a client, the SSS process, an inetd-like program, launches the httpd server

program to handle the request and then terminates the program when the

request is complete. With this method, each HTTP request from a client causes a

new httpd program to spawn and run as the user account making the request

instead of using a non-privileged account such as ‘apache’. This method is

suitable for the MYSEA architecture since the application processes are not

trusted and should not be able to directly access the MLS network. Before

 60

implementing PHP, the MYSEA httpd file size was 1.1 Megabytes, after the PHP

implementation the file size grew to 5.8 Megabytes. When a client makes a

HTTP request, irrespective of requiring PHP, the new httpd will require 5.8

Megabytes of memory to be allocated to service that client request instead of

allocating 1.1 Megabytes of memory. If there were 100 simultaneous HTTP

requests, the server would have to allocate over a half of gigabyte of memory to

service the requests.

The DSO PHP implementation used in the Red Hat 8 environment is not

possible until the MYSEA httpd is ported to provide the correct output required by

the Apache ‘apxs’ support program. However, this method uses the same

amount of memory as the static method; therefore, this implementation is of no

real advantage with respect to memory usage. Another alternative was to

compile PHP as a Common Gateway Interface (CGI) binary. When used as a

CGI binary, the PHP interpreter is used as a standalone program, which is only

invoked when a HTTP request involves a PHP web page. The httpd binary

remains unchanged, only the configuration file (http.conf) is altered to handle the

servicing of PHP web pages. This method uses fewer memory resources

because the PHP interpreter is only invoked when a HTTP request involves

parsing PHP web pages.

There are two common methodologies employed when using PHP as a

CGI binary. If the PHP binary is to be placed outside of the web directory

structure, for example placing PHP in /usr/local/bin, then every PHP web page

will require the directive ‘#!/usr/local/bin/php’ to be placed in the first line of the

PHP script. The other method is to place the PHP binary in the web directory

structure in the cgi-bin directory; however, in this case all PHP pages will need to

be placed under this directory as well.

Using PHP as a CGI binary requires less memory since the PHP

interpreter is only invoked when a HTTP request involves parsing a PHP web

page, however, there is an overhead in processing and response time since the

PHP interpreter is called for every PHP web page request. Properly securing

 61

PHP to function as a CGI binary is another issue. CERT Advisory CA-1996-11

[30] states that no interpreters should be placed in the cgi-bin directory. If an

attacker gained access to the cgi-bin directory, he could remotely execute any

command that the interpreters can execute on the server. Due to the unique

nature of the MYSEA architecture's MLS security configuration, further analysis is

required to determine whether this would be a security concern.

 A possible security risk exists due to the method of placing the PHP

binary outside of the web directory structure. If a PHP web page was requested

by any user and the PHP interpreter failed to parse that requested web page the

output would be the source code of that PHP web page rendered as clear text.

This could potentially lead to a loss of proprietary or sensitive information.

The CGI method was not pursued due to time constraints in testing the

security of the CGI implementation in conjunction with the PHP code that

comprises the BASE web application.

E. FUNCTIONAL TEST PLAN AND REPORTS

This section will cover a comprehensive functional test plan that will

demonstrate the functionality of the IDS components in both environments. The

installation instructions in Appendix A and Appendix B include component

functional testing; therefore, that level of testing will not be addressed in this test

plan. The functional test plan described in this section uses a test program called

IDSWakeup [31] to provide a variety of alerts and to establish a baseline to

determine how many alerts each sensor should detect. Both the Red Hat 8 Linux

and XTS400 environments were tested. Appendix C contains the detailed steps

for conducting each test. Figure 12 shows the physical layout of the machines

used for these tests.

 62

Figure 12: Lab Setup

1. Test Plan Objectives: Red Hat 8 Linux and XTS400
Environments

The first objective of the functional testing is to verify that the IDS sensor,

Snort, is actually monitoring the traffic and looking for malicious traffic. When

malicious traffic is discovered, Snort should send an alert via the PostgreSQL

client resident on the sensor to the remote PostgreSQL database. The second

objective is to verify that new alerts are stored in the database, and that the data

is accessible by the BASE web application for displaying information pertaining to

the alerts. A third objective is to ensure the segregation of network traffic

between the sensors and their respective databases. Traffic monitored by IDS1

 63

should not be seen by IDS2 and vice versa. To accomplish these testing

objectives the test program IDSWakeup will be used to generate fake attacks.

IDSWakeup is a false positive generator that sends IP packets containing

fake malicious data to a destination IP address. Snort construes this data as

actual malicious data, thus causing an alert to trigger. Not all of the fake alerts

generated by IDSWakeup may be suitable for testing Snort. The false attacks are

stateless attacks, which mean there is no established TCP/IP connection

between the remote host and the machine sending the false attacks. The current

version of Snort is better at determining if these stateless attacks warrant an alert

over the previous versions of Snort. To illustrate this point, R. Bejtlich [34], used

IDSWakeup to test Snort 2.6.1.5. Out of 181 packets sent by IDSWakeup, only

26 alerts were generated by Snort.

The method for the test was to attack a system on the same network

segment as the sensors IDS1 and IDS2, thus testing that IDS1 and IDS2 are

properly monitoring the network traffic. To conduct the test another Debian

machine was created (hostname Attacker) to serve as the attack platform and

configured with the IDSWakeup program.

2. Functional Test: Red Hat 8 Linux Environment

Before commencing the test, each component was verified to be

functioning properly. Refer to the installation instructions in Appendix A or

Appendix B for performing component-level functional tests.

The first test sent the fake attacks to the unclassified IP address of the

Red Hat 8 server (192.168.100.3). The expected result is that IDS1 should detect

some attacks and send alerts to its respective PostgreSQL database on the Red

Hat 8 server. The number of attacks sent by IDSWakeup that IDS1 will actually

identify as attacks was unknown so the first attempt served as a baseline. IDS2

should not send alerts because it should not see any of the fake attacks if the

networks are properly separated.

 64

The attack machine was reconfigured for the secret network and the test

was repeated, sending the fake attacks to the secret IP address on the Red Hat

8 server (192.168.101.3). The expected result for this test was that IDS2 should

detect the same number and type of attacks that IDS1 detected and the alert

count on IDS1 should not increase.

3. Functional Test Report: Red Hat 8 Linux Environment

After IDSWakeup completed its first test run against IDS1, the unclassified

web site BASE was accessed. Table 4 shows the breakdown of alerts detected

by Snort as viewed on the home page of the BASE unclassified website. The

secret BASE web site showed zero alerts, which is the expected result and

verifies that network traffic was properly segmented.

At the completion of the second test run, the secret BASE web site

showed that the same type and number of alerts detected by IDS1 were detected

by IDS2. Table 5 shows the data recorded from this test. Accessing the

unclassified BASE web site showed that the previous alert count did not

increase, therefore the network traffic was properly segmented and each IDS

sent alert data to the proper PostgreSQL database.

RH8 IDS1

Total # Alerts Unique Alerts TCP% UPD% ICMP% Portscan Traffic %

18 12 56% 22% 11% 11%

Table 4: IDS1 Alerts Sent

RH8 IDS2

Total # Alerts Unique Alerts TCP% UPD% ICMP% Portscan Traffic %

18 12 56% 22% 11% 11%

Table 5: IDS2 Alerts Sent

 65

Using the test program IDSWakeup the following test objectives were

verified:

 a. IDS sensor can monitor traffic in promiscuous mode

b. IDS sensor can detect known malicious traffic and generates

valid alerts

 c. Network traffic is properly segmented

 d. Alerts are properly stored in the proper database

 e. Alert data is accessible from the BASE application

4. Functional Test: XTS400 Environment

The same testing methodology was repeated for the XTS400 environment

using the same IDS sensors that were used in the Red Hat 8 Linux environment.

To counteract denial of service attacks Snort uses threshold times for sending

alerts. If the IDSWakeup test were looped, Snort would eventually stop sending

alerts. This factor was taken into account when these tests were repeated soon

after testing the Red Hat 8 environment, however, due to the time required to

reconfigure the Attacker machine and low frequency of test runs, there was no

expectation that the threshold times would be reached. The expected results are

that IDS1 and IDS2 will detect the same number and type of attacks but alerts

will be sent to the databases on the XTS400 system.

The enforcement of MAC policies will also be tested by using the user

‘mdemo1’ that was configured during the MYSEA environment installation to

access the unclassified BASE web site and secret BASE web site. The standard

MYSEA installation procedures were used to set up the test environment. Since

the Attacker machine was still configured for the secret network, the testing

started by running the IDSWakeup test against IDS2. To view alerts a

SIM_SECRET session was established for user mdemo1 and the secret BASE

web site was accessed to view the alerts.

 66

The Attacker machine was reconfigured to operate on the unclassified

network and the IDSWakeup test was repeated, this time against IDS1. To

access the unclassified web site a SIM_UNCLASSIFIED session was

established for the user mdemo1.

5. Functional Test Report: XTS400 Environment

The data recorded in Tables 6 and 7, obtained by viewing each BASE web

application, shows that the sensors were able to detect malicious traffic and send

alerts about that malicious traffic to their respective databases.

To test MAC poli cies an attempt to access the secret BASE web site was

made while the user mdemo1 was logged in under a SIM_UNCLASSIFIED

session. The result was a web page informing that access to the BASE web site

was forbidden.

XTS400 IDS1

Total # Alerts Unique Alerts TCP% UPD% ICMP% Portscan Traffic %

16 10 63 25 13 0

Table 6: IDS1 Alerts Sent
XTS400 IDS2

Total # Alerts Unique Alerts TCP% UPD% ICMP% Portscan Traffic %

16 10 63 25 13 0

Table 7: IDS2 Alerts Sent

Using the IDSWakeup program and attempting to violate MAC policies

verified the following objectives:

a. IDS sensor can monitor traffic in promiscuous mode

b. IDS sensor detected known malicious traffic and generates valid
alerts

c. Network traffic is properly segmented

 67

d. Alerts are properly stored in the proper database

e. Alert data is accessible from the BASE application

f. MAC policies are enforced by the MYSEA programs and STOP
6.3 OS with respect to database accesses and web site access

F. SUMMARY

Implementing the PostgreSQL databases and BASE web application on

the MLS server required some customization because of the MAC policies

employed on the STOP 6.3 operating system and previous modifications to the

Apache source code. The implementation of the IDS components was

successful and the functional test verified that the IDS components functioned as

expected in both environments. The next chapter presents a conclusion about

the overall contribution of IDSes in the MYSEA architecture and possible future

work.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

VI CONCLUSIONS AND FUTURE WORK

This chapter states the conclusions of this thesis and discusses possible

future work related to IDS integration in the MYSEA architecture.

A. CONCLUSION

The goal of this thesis was to provide a method to integrate an Intrusion

Detection System into the MYSEA architecture and provide security analysts with

an analysis tool, accessible from any workstation within the MLS network, to

analyze all alerts sent by the IDS sensors. Results from background research on

IDSes established that the typical deployment of IDSes uses the three

components that were implemented in this project: sensors, databases, and

analysis tools. Using a formal selection process, the sensor selected for this

project was the open source product Snort from Sourcefire. To store alerts sent

from Snort, the open source database product PostgreSQL was chosen. To view

alert data in a tractable format, the open source product Basic Analysis Security

Engine (BASE) was used.

Implementation of these components in the MYSEA architecture

constituted the main challenge of this work. Several designs were considered.

The first design, based on preliminary testing, utilized one central database,

however due to complications associated with trying to move data between

networks at different classification levels, an alternative design was created that

used multiple databases, one for each sensor. This design allows use of the tool

BASE to analyze network traffic and formulate a complete picture concerning

probable network attacks.

The preferred design, which supported storage of all alerts in one external

central database, was altered due to complications with the installation of a key

component, the MySQL proxy software, on the STOP 6.3 operating system.

Instead of one central repository each IDS sends data to its own remote

 70

database, which is installed on the MLS server. The project clearly demonstrated

that it was possible to implement the required components to create a functional

Intrusion Detection System.

The current implementation may not be the optimal implementation, but

the MYSEA architecture is constantly undergoing development and refinement. It

is to be expected that as the MYSEA architecture moves from STOP operating

system version 6.3 to version 7.0 there will be significant improvements to the

IDS implementation method.

B. FUTURE WORK

The following issues became known during this project and warrant further

study.

1. Labeling Data

In the Concept of Operations section, an assumption was made that the

database is benign and does not alter the security classification labels that were

applied by the ML process. The ML process (see Figure 5) receives data from

processes U and S and applies a label to the data at the application layer with a

security classification before the data is forwarded to process Sys High. The

protection of the classification labels from malicious or unintended permutations

should be addressed.

The ML process could provide an integrity check through the use of "crypto

seals" applied to the embedded labels. As data is transferred between the database

and MYSEA client machine used by the analyst, the ML process would verify the

integrity of the data by checking the crypto seal.

2. MySQL Proxy Program

The MySQL Proxy code used in preliminary testing is neoteric code. The

problem with compiling and implementing the MySQL Proxy was covered in

Chapter IV, Section D. It was determined through testing on a Red Hat 8 system

that this code would be incompatible with the existing libraries on the STOP 6.3

operating system.

 71

The STOP 7 operating system may support the programs and libraries

required to compile the MySQL proxy code.. Therefore, research could be

applied to the feasibility in implementing the MySQL proxy code on the STOP 7

operating system. This proxy code may yield some benefits to future IDS

implementations.

3. Read Down Support

During installation and testing of the BASE web sites, an observation was

made that when a session is established at SIM_SECRET the user of that

session cannot access data from the unclassified Snort database via the

unclassified BASE application. At the SIM_SECRET session level, the user

should be able to perform a “read down” of the data in the unclassified Snort

database. When an attempt was made to access data from the unclassified Snort

database via the unclassified BASE application, the result was a database

connection error. Full details of this observation are covered in Chapter V,

Section D.

For the analysis tool, BASE, to exhibit read down capabilities,

modifications would have to be made to the code. The current application makes

SQL queries to the database, which require both, read and write access.

Research is required to either modify the database and BASE application to

support read down capabilities or to implement a trusted database proxy.

4. PHP Implementation

Neither implementation of PHP, either as a DSO module, nor as a static

module, is an optimal solution for the MYSEA environment due to the amount of

memory each implementation uses. The security issues related to using PHP as

a CGI binary resulted in a suboptimal solution as well.

One area for future research is the use of light and heavy httpd binaries.

When dynamic content such as PHP is required, the light httpd could proxy to the

heavy httpd to handle the request. The heavy httpd would be compiled with all

 72

required modules such as mod_perl, mod_php, and so on. The light httpd is only

compiled with the minimum modules required to create a functional httpd binary.

One required module would be the proxy module. This method would eliminate

the security risks of using an interpreter such as CGI, and potentially would save

memory resources. Only the processing delay between the light httpd and heavy

httpd is a potential issue.

 73

APPENDIX A RED HAT 8 LAB INSTALLATION

This appendix outlines the installation procedures for installing all of the

IDS components using the Linux Debian 4.0 operating system and Linux Red Hat

8 operating system. Apache, PostgreSQL, and Basic Analysis Security Engine

(BASE) will be installed on the Red Hat 8 and Snort will be installed on Debian

4.0.

To view the BASE web site a client with a web browser such as Internet

Explorer or Firefox is also required. .

A. INSTALLATION AND TEST TOPOLOGY

The test topology is comprised of three physical machines and four virtual

machines (VMs) built using VMWare Workstation from VMWare. Figure 13

shows the topology that was used to perform the installation and tests for this

project.

Dell workstation:

 2.8 GHz CPU with 2GBs RAM

 Two physical network ports

 Four virtual machines with virtual bridging

 Bridge 0: IDS1, Red Hat 8, Attacker

 Bridge 1: IDS2, Red Hat 8, Attacker

 74

Figure 13: Lab Setup

Installing the desktop operating system, Red Hat 8, VMWare, and

configuring VMWare workstation is beyond the scope of this project.

1. Conventions used in this Documentation

All commands that need to be typed at the command prompt are italicized

and in Courier New font. All items that are typed into a configuration file are in

Courier New font.

 75

B. INSTALLING SNORT ON DEBIAN 4.0

This section covers installing the Debian, Snort, and other programs

required to support Snort.

1. Debian Operating System Installation

1. Insert Debian DVD-1 and boot up the PC or VM

2. Select english for language

3. Select United States for country

4. Select American English for keymap

5. DO NOT USE DHCP, configure the network manually. Enter the

following information (refer to lab diagram for IP addresses)

 IP: IDS1 - 192.168.100.10 IP: IDS2 - 192.168.101.10

 Net Mask for both IDS1 and IDS2: 255.255.255.0

 Gateway <leave blank>

 DNS server <leave blank>

6. Enter a hostname: For IDS1: IDS1 For IDS2: IDS2

7. Enter domain name: <leave blank>

8. Partition Disk:

 Select Guided - use entire disk

 Partitioning scheme - select Separate /home, /usr, /var, and /tmp

partitions

Install will compute partition space. Select Finish partitioning and write

changes to disk then yes to commit changes

9. Configure time zone, set for PST

10. Set root's password

 76

11. Add a user and password

12. Install will set up base system

13. Select no for network mirror, all software should be installed from one

of the three DVDs or from CD1

14. Select no to participate in package survey

15. Software selection

Unselect Desktop environment

Unselect Standard system.

16. Select Yes to install GRUB boot loader to the master boot record

17. Reboot into the finished system

2. Support Software Installation

Use apt-get install to install software from the Debian DVD.

Example lets install ssh so a ssh terminal can be used if needed.

1. apt-get install ssh

Follow the prompts to complete the installation

2. Install the following packages from DVD-1. These will be required for

installing libpcap and snort

 gcc g++ make postgresql-client flex bison libpcre3 libpcre3-dev

 libpq-dev

apt-get install gcc g++ make postgresql-client flex

bison libpcre3 libpcre3-dev libpq-dev

3. Libpcap0.9.8 Installation

1. Use libpcap0.9.8.tar.gz file provided on CD1 /snort-2.8.0.1

2. Copy tar file to /usr/local/src

 77

 cd /usr/local/src
tar –xvzf libpcap-0.9.8.tar.gz

 cd libpcap-0.9.8

 ./configure

 make

 make install

4. Snort Installation

1. Use the snort tar file provided on CD1 /snort-2.8.0.1

2. Copy tar file to /usr/local/src

 cd /usr/local/src
 tar –xvf snort-2.8.0.1.tar

 cd snort-2.8.0.1

./configure --with-postgresql --enable-dynamicplugin

 make

 make install

 mkdir /etc/snort

 mkdir /var/log/snort

 groupadd snort

 useradd –g snort snort

 chown snort:snort /var/log/snort

5. Snort Rules Installation

1. Use the snort rules tar file provided on CD1 /snort-2.8.0.1

2. Copy the rules tarball to /etc/snort

 cd /etc/snort
 tar –xvzf snortrules-snapshot-CURRENT.tar.gz

 cp /usr/local/src/snort-2.8.0.1/etc/*.conf* /etc/snort

 cp /usr/local/src/snort-2.8.0.1/etc/*.map /etc/snort

3. Configure the snort.conf file located at /etc/snort/snort.conf. Change

the following lines less the quotes:

 78

‘var HOME_NET any’ change to:

‘var HOME_NET 192.168.100.0/24’ #for IDS1

‘var HOME_NET 192.168.101.0/24’ #for IDS2

‘var EXTERNAL_NET any’ change to:
‘var EXTERNAL_NET !$HOME_NET’

Search on the string ‘var RULE_PATH’, change the line to:

‘var RULE_PATH /etc/snort/rules’

Functional Test

1. Start snort with the following command

snort –D –u snort –g snort –c /etc/snort/snort.conf

2. Check that eth0 enters promiscuous mode

3. Check /var/log/syslog for Snort initialization completed successfully

(pid=some number)

tail -f /var/log/syslog

4. Run a portscan on the IDS using nmap or any available port scanner.

check /var/log/snort/alerts for a portscan priority 3 message

tail -f /var/log/snort/alerts

5. If snort works then kill the snort process and continue

 ps aux | grep snort

 kill <pid number of snort process>

End Functional Test

6. Finalize Sensor Installation

Change configuration file and send alerts to Red Hat

STOP!

 79

NOTE: Before proceeding with these steps, complete the installation

procedures for PostgreSQL including setting up the schema for the snort

database.

Functional Test

1. Run the following command:

psql -h 192.168.100.3 -U snort -d snort

NOTE: The IP address will vary according to your network configuration

2. <Observe: should get a snort=> prompt. Exit from psql with \q

End Functional Test

3. Edit snort.conf to send all alerts to the PostgreSQL database

 cd /etc/snort

 edit snort.conf

 page down to Step #4: Configure output plugins

 find the line # output database: alert, postgresql…

 NOTE: search for postgres with your editor’s search feature

 Configure the parameters so the line looks like this:

output database: log, postgresql, user=snort

dbname=snort port=5433 host=192.168.100.3

NOTE: your parameters will vary based on your network settings and port

settings:

RH8 network 1: 192.168.100.3

RH8 network 2: 192.168.101.3

Unclassified Postgresql database: port 5433

Secret Postgresql database: port 5434

Functional Test

 80

4. Start snort and check that it initialized correctly:

snort –D –u snort –g snort –c /etc/snort/snort.conf

tail –f /var/log/syslog

5. Repeat the portscan test. This time the alert should go to the

PostgreSQL database. Log into the PostgreSQL database either remotely from

the IDS or locally on the database server:

 snort=> select * from event;

 snort=> select * from signature;

Depending on the port scanner used there may be one or two events and

one or two signatures.

End Functional Test

7. Lokkit Firewall Installation

To give the sensor some protection install a simple iptables based firewall

called lokkit

1. Copy lokkit_0.50.22-7.1_i386.deb from CD1 /misc to /usr/local/src

 dpkg –i lokkit lokkit_0.50.22-7.1_i386.deb

2. Run the command lokkit

3. Choose medium and customize

Allow port 22 for SSH and the port for the PostgreSQL database you wish

to send alerts. The database port must be added for two-way communication

between database server and IDS.

 81

C. INSTALLING POSTGRESQL 7.4.18 ON RED HAT 8

1. Create System Accounts

Create two users; postgres and snort. User postgres will own the

postmaster process and snort is used to make the databases. Neither user

requires any elevated privileges.

adduser postgres

adduser snort

change password for each user

passwd <username> then follow the prompts

2. PostgreSQL 7.4.18 Installation

Perform the following steps as root:

1. Copy postgresql-base-7.4.18.tar.gz to /usr/local/src from CD1

/postgres-7.4.18

 tar -xvzf postgresql-base-7.4.18.tar.gz
 cd postgresql-7.4.18

NOTE: Compiling Postgresql requires gmake > 3.76.1

 gmake --version = 3.79.1 on RH

 ISO/ANSI C compiler such as GCC

 GNU Flex and Bison

2. Run configure

 ./configure

 Default installation is installed at /usr/local/pgsql. All other files will

install to sub-directories under /pgsql

 Use ./configure --help to list other alternatives

3. Start build with gmake

 82

 gmake

<Observe: "All of PostgreSQL successfully made. Ready to install"

4. (optional) Regression Tests

 As a non-privileged user:

 gmake check

5. Install the files

 gmake install

<Observe: Installed with no errors>

3. Post-installation Setup

1. Update Environment Variables

 add the following two lines to /etc/profile

PATH=/usr/local/pgsql/bin:$PATH
 MANPATH=/usr/local/pgsql/man:$MANPATH

2. Initialize a database storage area on disk

 mkdir /usr/local/pgsql/data

 chown postgres /usr/local/pgsql/data

 su postgres

 initdb -D /usr/local/pgsql/data
 <observe:

The files belonging to this database system will be owned by user

"postgres"…

>

3. Starting and stopping the database server as user postgres

Use the pg_ctl script as user postgres

Type pg_ctl --help for options

 83

Start:

pg_ctl start -D /usr/local/pgsql/data -l serverlog

Stop:

pg_ctl stop -D /usr/local/pgsql/data -m fast

Functional Test

4. Start the database and test the setup by making a database called

mydb then login as postgres. PostgreSQL 7.4.18 requires logging in with

username and database unless username and database are the same name.

 pg_ctl start -D /usr/local/pgsql/data -l logfile

 createdb mydb

 psql -U postgres -d mydb

 \q

Stop the database

 pg_ctl stop -D /usr/local/pgsql/data -m fast

 exit (to exit the su postgres shell)

End Functional Test
5. Setting up to simulate multi-level access on a STOP 6.3.1 OS:

Make the following directories as user root:

mkdir /var/postgresql

mkdir /var/postgresql/unclass_data

mkdir /var/postgresql/secret_data

 Change owner to user postgres:

chown postgres /var/postgresql/unclass_data

chown postgres /var/postgresql/secret_data

su postgres

initdb -D /var/postgresql/unclass_data

initdb -D /var/postgresql/secret_data

 Edit each postgresql.conf file

 84

On both files enable tcpip connections: tcpip_socket = true

Give each instance a different port number

 unclass_data: port = 5433

 secret_data: port = 5434

Edit pg_hba.conf for each data cluster area. Page down to the end of the

file.

 /var/postgresql/unclass_data/pg_hba.conf

 TYPE: host

 DATABASE: snort

 USER: snort

 IP_ADDRESS: 192.168.100.0

 MASK: 255.255.255.0

 AUTH_TYPE: MD5

 /var/postgresql/secret_data/pg_hba.conf

 TYPE: host

 DATABASE: snort

 USER: snort

 IP_ADDRESS: 192.168.101.0

 MASK: 255.255.255.0

 AUTH_TYPE: MD5

Functional Test

Start the unclass data area from directory /var/postgresql/unclass_data

cd /var/postgresql/unclass_data

pg_ctl start -D /var/postgresql/unclass_data -l logfile

Check the logfile, ensure database is ready

 Start the secret data area from directory /var/postgresql/secret-data

cd /var/postgresql/secret_data

pg_ctl start -D /var/postgresql/secret_data -l logfile

 85

Check the logfile, ensure the database is ready

End Functional Test

6. Create the snort databases for each sensor

 As the user postgres create the user snort for each data area

createuser -p 5433 snort

Select yes to create databases and no to create other users

createuser -p 5434 snort

Select yes to create databases and no to create other users

Alter snort’s database password for unclass_data

 psql -p 5433 -U postgres -d template1

 alter user snort password ‘mysea’;

 \q

Alter snort’s database password for secret_data

 psql -p 5434 -U postgres -d template1

 alter user snort password ‘mysea’;

 \q

Create the snort databases

 su - snort
 createdb -p 5433 snort

 createdb -p 5434 snort

 Update the schema for each database. Obtain the create_postgresql file

from CD1 /snort-2.8.0.1/create_postgresql and copy to a temporary directory.

Change to the directory containing ‘create_postgresql’ file

 psql -p 5433 < ./create_postgresql

 psql -p 5434 < ./create_postgresql

Functional Test

7. If the sensors have been completed:

 86

Login from sensor IDS1

psql -h 192.168.100.3 -p 5433 -U snort -d snort

Enter password

Run a query

select * from event;

Should get 0 rows.

\q

NOTE: If the output is, access denied the database is not owned by snort

Login from sensor IDS2

psql -h 192.168.101.3 -p 5434 -U snort -d snort

Enter password

Run a query

select * from event;

Should get 0 rows.

\q

NOTE: If the output is, access denied the database is not owned by the

user snort

Exit from all of the shells to get back to the root user but leave both

databases running.

End Functional Test

D. INSTALLING BASE ON RED HAT 8

This section covers installing the web application BASE, along with

required software programs Apache and PHP. Perform the following procedures

as root

 87

1. Apache Installation

1. Install Apache 1.3.0 from CD1. Copy apache_1.3.0.tar.tar from CD 1

/apache-1.3.0 to /usr/local/src

 cd /usr/local/src

 tar -xvzf apache_1.3.0.tar.tar

 cd /apache_1.3.0

NOTE: To use PHP with Apache, Apache needs to be compiled with

mod_so support.

 ./configure --enable-module=so

 make

 make install

<observe: the banner "You now have successfully built and installed the

Apache 1.3..." box>

2. Edit httpd.conf

Edit httpd.conf located at /usr/local/apache/etc

Change ServerName to be localhost or IP address of the machine

3. Starting and Stopping apache server

start apache:/usr/local/apache/sbin/apachectl start

stop apache: /usr/local/apache/sbin/apachectl stop

Functional Test

4. Test the server

Start the apache server:

/usr/local/apache/sbin/apachectl start

Using a web browser that can access the RH8 server browse to

http://192.168.100.3 or whatever IP address is used by RH8.

<Observe: The "It Worked!" home page should be displayed>

 88

5. Verify requirements for installing php4

 /usr/local/apache/sbin/httpd -l

Look for two modules: http_core.c and mod_so.c

If they are present proceed to INSTALL PHP4 otherwise troubleshoot why

the modules were not compiled.

2. PHP4.3.11 Installation

1. Install PHP 4.3.11 from CD1

OPTIONAL: If you want graphic support for BASE, i.e., graphs and charts,

perform the following installation procedures:

Copy all of the files from CD1 /php-4.3.11/GD support to /usr/local/src and

install them using the rpm package installer.

rpm -U libpng-1.2.2-8.i386.rpm

rpm -iv libpng-devel-1.2.2-8.i386.rpm

rpm -iv libjpeg-devel-6b-21.i386.rpm

rpm -iv zlib-1.1.4-4.i386.rpm

rpm -iv zlib-devel-1.1.4-4.i386.rpm

Copy php-4.3.11.tar.tar from CD1 /php-4.3.11 to /usr/local/src

tar -xvzf php-4.3.11.tar.tar

cd php4.3.11

./configure --with-apxs=/usr/local/apache/sbin/apxs --
with-pear --with-pgsql=/usr/local/pgsql --with-gd --with-
png-dir=/usr/lib --with-jpeg-dir=/usr/lib --with-zlib-
dir=/usr/include

NOTE: this is with graphics support. If you do not want graphics support

(GD) them omit everything after --with-gd

 make

 make install

NOTE: ignore the suggestion about adding the path to the php.ini file

 89

2. Post Installation

 Edit /usr/local/apache/etc/httpd.conf

 Add the following to the end of the file

 #AddType directives for php 4.3.1

 AddType application/x-httpd-php .php .phtml

 AddType application/x-httpd-php-source .phps

Restart apache:

 /usr/local/apache/sbin/apachectl restart

Functional Test

Create a test script called phpinfo.php

 <? phpinfo() ?>

Save phpinfo.php and place in apache's document root

cp phpinfo.php /usr/local/apache/share/htdocs

Browse to http://192.168.100.3/phpinfo.php

<observe: a web page that displays php information>

End Functional Test

Optional install for making Charts and Graphs in BASE

If PHP was compiled with GD support perform the following:

1. Copy all files from CD1 /php-4.3.11/pear to /usr/local/src

 cd /usr/local/src

2. Run the command: pear config-set preferred_state alpha

3. Install the following packages in order

 pear install Image_Color-1.0.2.tar

 pear install Image_Canvas-0.3.0.tar

 pear install Image_Graph-0.7.2.tar

 90

 pear install Numbers_Roman-1.0.1.tar

 pear install Numbers_Words-0.14.0.tar

3. BASE (Basic Analysis Security Engine) Installation

1. Install ADOdb. Copy adodb498.gz from CD1/base-1.4.0 to /usr/local/

 tar -xvzf adodb498.gz

 <observe: new directory adodb created with files>

NOTE: There is nothing to install but remember this location for

configuring BASE

4. Unclassified BASE Installation

NOTE: verify the unclass database snort is running before performing

these procedures

1. Copy base 1.4.0.tar.gz from CD1 to /usr/local/apache/share/htdocs

cd /usr/local/apache/share/htdocs

tar -xvzf base-1.4.0.tar.gz

2. Rename directory base-1.4.0 to base_unclass:

mv base-1.4.0 base_unclass

3. Set read/write/execute on directory base_unclass

chmod 777 base_unclass

2. Open a web browser and browse

 to http://192.168.100.3/base_unclass/setup/indiex.php

 <Observe: web page with banner and Settings:

 Configurable writing: yes

 Php version: 4.3.11

 Php logging level: <blank>

5. Step 1 of 5

 91

Enter the location to adodb: /usr/local/adodb

6. Step 2 of 5

Enter the applicable information

 Pick a Database type: PostGRES

 Database name: snort

 Database host: 192.168.100.3

 Database port: 5433

 Database user name: snort

 Database password: mysea

 Leave the Archive Database items blank

 Click Submit Query

7. Step 3 of 5

Click the box next to Use Authentication System

 Admin user name: snort

 Password: mysea

 Full name: snort

 NOTE: Any name can be used

 Click on Submit Query

8. Step 4 of 5

Click on Create BASE AG button to extend the snort database

Verify all tables were successfully created and roles inserted

Click on the link Now continue to step 5 ... (middle of the page)

9. Login as snort password mysea.

<Ignore the error about user not existing>

10. Reset the attributes on the base_unclass directory

chmod 755 base_unclass

 92

11. Cosmetic change: Change style sheets so all banners display the

word “UNCLASS” at the top of each page.

 cd /usr/local/apache/share/htdocs/base_unclass/languages

 Edit english.lang.php

 Search for _TITLE

 Add the word UNCLASS before and after the title in single quotes

12. Bug fix: Fixes fatal error when log out link is clicked.

 cd /usr/local/apache/share/htdocs/base_unclass

 Open the base_logout.php file in a text editor

 Change ‘base_header()’ function to ‘header()’

 Keep all text inside the parentheses

 Save the file

NOTE: If you did the IDS testing then you should see some alert data in

the database.

5. Secret BASE Installation

NOTE: verify the secret database snort is running before performing these

procedures

1. Return to the htdocs directory and untar base

cd /usr/local/apache/share/htdocs

tar -xvzf base-1.4.0.tar.gz

2. Rename directory base-1.4.0 to base_secret:

mv base-1.4.0 base_secret

3. Change read/write/execute attributes on directory base_secret

chmod 777 base_secret

4. Open a web browser and browse

 93

 to: http://192.168.101.3/base_secret/index.php

 <Observe: web page with banner and Settings:

 Configurable writing: yes

 Php version: 4.3.11

 Php logging level: <blank>

5. Step 1 of 5

Enter the location to adodb: /usr/local/adodb

6. Step 2 of 5

Enter the applicable information

 Pick a Database type: PostGRES

 Database name: snort

 Database host: 192.168.101.3

 Database port: 5434

 Database user name: snort

 Database password: mysea

 Leave the Archive Database items blank

 Click Submit Query

7. Step 3 of 5

Click the box next to Use Authentication System

 Admin user name: snort

 password: mysea

 full name: snort

 NOTE: Any name can be used

 Click on Submit Query

8. Step 4 of 5

 94

Click on Create BASE AG button to extend the snort database

Verify all tables were successfully created and roles inserted

Click on the link Now continue to step 5 ... (middle of the page)

9. Login as snort password mysea.

<Ignore the error about user not existing>

10. Reset the attributes on directory base_secret

 chmod 755 base_secret

11. Cosmetic change: Change style sheets so all banners display the

word “SECRET” at the top of each page.

cd /usr/local/apache/share/htdocs/base_secret/languages

 Edit english.lang.php

 Search for _TITLE

 Add the word SECRET before and after the title in single quotes

12. Bug fix: Fixes fatal error when log out link is clicked.

cd /usr/local/apache/share/htdocs/base_secret

Open the base_logout.php file in a text editor

 Change ‘base_header()’ function to ‘header()’

 Keep all text inside the parentheses

 Save the file

NOTE: If you did the IDS testing then you should see some alert data in

the database.

 95

APPENDIX B XTS400 INSTALLATION PROCEDURES

This appendix outlines the installation procedures for the IDS on a Debian

4.0 operating system and installing PostgreSQL and Basic Analysis Security

Engine (BASE) on the STOP 6.3 operating system.

A. INSTALLATION AND TEST TOPOLOGY

The test topology is comprised of three physical machines and two Virtual

Machines. One of the physical machines is the XTS400 server that runs the

STOP 6.3 operating system. The diagram above the server shows the layout of

the 4-port network interface card mounted in the PCI bus at the rear of the

machine. This is important to information to keep in mind when setting up the test

network and configuring the Ethernet cards. Figure 14 shows the lab layout.

Figure 14: Lab Setup

 96

Installing the desktop operating system, Red Hat 8, VMWare, and

configuring VMWare workstation is beyond the scope of this project.

1. Conventions used in this Documentation

All commands that need to be typed at the command prompt are italicized

and in Courier New font. All items are typed into a configuration file are in

Courier New font.

B. INSTALLING SNORT ON DEBIAN 4.0

This section covers installing the Linux Operating System, Snort, and

other programs required to support Snort.

1. Debian Operating System Installation

1. Insert Debian DVD-1 and boot up the PC

2. Select english for language

3. Select United States for country

4. Select American English for keymap

5. DO NOT USE DHCP, configure the network manually

Enter the following information (refer to lab diagram for IP addresses)

 IP: IDS1 - 192.168.100.10 IDS2 - 192.168.101.10

 Net Mask: For both IDS - 255.255.255.0

 Gateway: <leave blank>
 DNS server: <leave blank>

6. Enter a hostname: For IDS1 - IDS1 For IDS2 - IDS2

7. Enter domain name: <leave blank>

8. Partition Disk

 Select Guided - use entire disk

 97

 Partitioning scheme - select Separate /home, /usr, /var, and /tmp

partitions

Install will compute partition space. Select Finish partitioning and write

changes to disk then yes to commit changes

9. Configure time zone, set for PST

10. Set root's password

11. Add a user and password

12. Install will set up base system

13. Select no for network mirror, all software should be installed from one

of the three DVDs or from CD1

14. Select no to participate in package survey

15. Software selection

Unselect Desktop environment

Unselect Standard system.

16. Select Yes to install GRUB boot loader to the master boot record

17. Reboot into the finished system

2. Support Software Installation

Use apt-get install to install software.

Example lets install ssh so a ssh terminal can be used if needed.

1. apt-get install ssh

2. Install the following packages from DVD-1. These will be required for

installing libpcap and snort.

 gcc g++ make postgresql-client flex bison libpcre3 libpcre3-dev

 libpq-dev

 98

apt-get install gcc g++ make postgresql-client flex

bison libpcre3 libpcre3-dev libpq-dev

3. Libpcap0.9.8 Installation

1. Use libpcap0.9.8.tar.gz file provided on CD1 /snort-2.8.0.1

2. Copy tar file to /usr/local/src

 cd /usr/local/src
 tar –xvzf libpcap-0.9.8.tar.gz

 cd libpcap-0.9.8

 ./configure

 make

 make install

4. Snort Installation

1. Use the snort tar file provided on CD1 /snort-2.8.0.1

2. Copy tar file to /usr/local/src

 cd /usr/local/src
 tar –xvf snort-2.8.0.1.tar

 cd snort-2.8.0.1

./configure --with-postgresql --enable-dynamicplugin

 make

 make install

 mkdir /etc/snort

 mkdir /var/log/snort

 groupadd snort

 useradd –g snort snort

 chown snort:snort /var/log/snort

5. Snort Rules Installation

1. Use the snort rules tar file provided on CD1 /snort-2.8.0.1

 99

2. Copy the rules tarball to /etc/snort

cd /etc/snort

tar –xvzf snortrules-snapshot-CURRENT.tar.gz

 cp /usr/local/src/snort-2.8.0.1/etc/*.conf* /etc/snort

 cp /usr/local/src/snort-2.8.0.1/etc/*.map /etc/snort

3. Configure the snort.conf file at /etc/snot/snot.conf. Change the following

lines less the quotes:

‘var HOME_NET any’ change to:
‘var HOME_NET 192.168.100.0/24’ #for IDS1

‘var HOME_NET 192.168.101.0/24’ #for IDS2

‘var EXTERNAL_NET any’ change to:

‘var EXTERNAL_NET !$HOME_NET’

Search on the string ‘var RULE_PATH’

Change the line to

‘var RULE_PATH /etc/snort/rules’

Functional Test

1. Start snort with the following command

snort –D –u snort –g snort –c /etc/snort/snort.conf

2. Check that eth0 enters promiscuous mode

3. Check /var/log/syslog for Snort initialization completed successfully

(pid=some number)

tail -f /var/log/syslog

4. Run a portscan on the IDS using nmap or any available port scanner.

check /var/log/snort/alerts for a portscan priority 3 message

tail -f /var/log/snort/alerts

5. If snort works then kill the snort process and continue

End Functional Test

 100

6. Finalize Sensor Installation

Change configuration file and send alerts to XTS400

STOP!

NOTE: Before proceeding with these steps, perform the installation

procedures for PostgreSQL including setting up the schema for the snort

database.

Functional Test

1. Run the following command:

psql -h 192.168.100.130 -U snort -d snort

NOTE: The IP address will vary according to your network configuration

2. <Observe: should get a snort=> prompt. Exit from psql with \q

End Functional Test

3. Edit snort.conf to send all alerts to the PostgreSQL database

 cd /etc/snort

 edit snort.conf

 page down to Step #4: Configure output plugins

 find the line # output database: alert, postgresql…

 NOTE: search for postgresql with your editor’s search feature

 Configure the parameters so line looks like this:

output database: log, postgresql, user=snort

dbname=snort port=5433 host=192.168.100.130

NOTE: your parameters will vary based on your network settings and port

settings

 Unclassified Postgresql database: port 5433

 101

 Secret Postgresql database: port 5434

Functional Test

4. Start snort and check that it initialized correctly:

snort –D –u snort –g snort –c /etc/snort/snort.conf

tail –f /var/log/syslog

5. Repeat the portscan test. This time the alert should go to the

PostgreSQL database.

Login to the PostgreSQL database either remotely from the IDS or locally

on the database server.

 snort=> select * from event;

 snort=> select * from signature;

Depending on the port scanner used there may be one or two events and

one or two signatures

End Functional Test

7. Lokkit Firewall Installation

To give the sensor some protection install a simple iptables based firewall

called lokkit

1. Copy lokkit_0.50.22-7.1_i386.deb from CD1 /misc to /usr/local/src

dpkg –i lokkit lokkit_0.50.22-7.1_i386.deb

2. Run the command lokkit

3. Choose medium and customize

Allow port 22 for SSH and the port for the PostgreSQL database you wish

to send alerts to. The database port must be added for two-way communication

between database server and IDS.

 102

C. XTS400 NETWORK SETUP

This section covers setting up the XTS400 to place two network ports into

different security classifications so the IDS can communicate with the

PostgreSQL databases. In future work all of the network ports will run at

maximum security level.

For this experiment to succeed the following Ethernet ports must be

changed to allow the IDS to communicate with the PostgreSQL database.

Device /dev/ether1 (sl1:il0)

Device /dev/ether2 (sl5 sc1:il0)

See lab diagram.

Conventions used in this documentation:

For the XTS400 setup documentation all security and integrity levels are in

bold Arial font and are given as security first then integrity:

Example: sl0:il0

Means security level 0 integrity level 0

Example: min:oss

Means: lowest possible security level with integrity level set to il3 with all

categories enabled.

<CR> mean carriage return, press the Enter key on the keyboard

1. Configure TCP/IP Parameters for Ether1 and Ether2

NOTE: IP addresses used below are from the Snort MLS testbed

configuration, modify as necessary to reflect current topology but it is

recommended to use these IP addresses for now.

Login as admin

Set security and integrity levels - min:max

 103

SAK

Enter command? tcpip_edit

Enter editor request? add

Enter TCP/IP daemon name? tcpip_unclass

Enter TCPIP/IP daemon description? Unclass TCP/IP connection

Enter domain name? <CR>

Enter host name? mlsserver

Will this daemon support IPv4? Y

Will this daemon support IPv6? <CR>

Treat all subnets in network as local[N] <CR>

Shutdown on failure[N] <CR>

Use default TCP minimum retransmission timeout[Y] <CR>

Enable IPv4 forwarding[N] <CR>

Send IPv4 redirects[Y] <CR>

Forward IPv4 source routed packets[N] <CR>

Accept IPv4 source routed packets[N] <CR>

Drop ICMP4 redirects[Y] <CR>

Reply to ICMP4 netmask requests[N} <CR>

Use randomly generated IPv4 datagram IDs[N] <CR>

Add the network interface configuration[Y] <CR>

Enter TCP/IP device name? /dev/ether1

Is IPv4 active on this interface?[Y] <CR>

 104

Enter the IPv4 address in the format A.B.C.D 192.168.100.130

Enter the IPv4 network mask in the format A.B.C.D 255.255.255.0

Use default IPv4 broadcast address?[Y] <CR>

<observe: Network interface /dev/ether1 added.>

Add another network interface entry[N] N

NOTE: this is the interface for the other IDS on the secret network

/dev/ether2

add

Enter TCP/IP daemon name? tcpip_secret

Enter TCPIP/IP daemon description? Secret TCP/IP connection

Enter domain name? <CR>

Enter host name? mlsserver

Will this daemon support IPv4? Y

Will this daemon support IPv6? <CR>

Treat all subnets in network as local[N] <CR>

Shutdown on failure[N] <CR>

Use default TCP minimum retransmission timeout[Y] <CR>

Enable IPv4 forwarding[N] <CR>

Send IPv4 redirects[Y] <CR>

Forward IPv4 source routed packets[N] <CR>

Accept IPv4 source routed packets[N] <CR>

Drop ICMP4 redirects[Y] <CR>

Reply to ICMP4 netmask requests[N} <CR>

Use randomly generated IPv4 datagram IDs[N] <CR>

 105

Add the network interface configuration[Y] <CR>

Enter TCP/IP device name? /dev/ether2

Is IPv4 active on this interface?[Y] <CR>

Enter the IPv4 address in the format A.B.C.D 192.168.101.130

Enter the IPv4 network mask in the format A.B.C.D 255.255.255.0

Use default IPv4 broadcast address?[Y] <CR>

<observe: Network interface /dev/ether1 added.>

Add another network interface entry[N] N

Add the route configuration[N] <CR>

Add the resolver configuration[N] <CR>

<observe: TCP/IP Daemon tcp_unclass added and tcp_secret added>

exit

NOTE: remove all references in the tcpip_mls to all Ethernet devices

except /dev/ether0

2. Configure the Daemon for tcp_unclass and tcp_secret

SAK - level should still be min:max

Enter command? daemon_edit

Enter editor request? add

Enter daemon name? tcpip_unclass

Enter the command line for the daemon program? tcpip

Enter the arguments for the program? <CR>

Enter daemon environment setting? <CR>

Start daemon at startup? Y

Is the daemon a High Integrity program file? Y

 106

Will this daemon control a device ? N

Enter daemon security level and categories sl1

Enter daemon integrity level and categories il0

Use default daemon priority [-1] <CR>

Enter user name? network

Enter group name? network

Display current starting order before setting start index[N] <CR>

Enter daemon start index? 2

 NOTE:, tcpip daemons must start first so if there are other daemons put

the tcpip daemon at the beginning of the order before other non tcpip daemons

Enter the delay interval in seconds before starting the daemon? 0

Enter the delay interval in seconds while stopping the daemon? 0

Enter daemon description? TCP_IP daemon for unclassified IDS

<observe: Daemon entry added.

NOTE: repeat the process to add a daemon for the tcp_secret network

Enter editor request? add

Enter daemon name? tcpip_secret

Enter the command line for the daemon program? tcpip

Enter the arguments for the program? <CR>

Enter daemon environment setting? <CR>

Start daemon at startup? Y

Is the daemon a High Integrity program file? Y

Will this daemon control a device ? N

Enter daemon security level and categories sl5 sc1

 107

Enter daemon integrity level and categories il0

Use default daemon priority [-1] <CR>

Enter user name? network

Enter group name? network

Display current starting order before setting start index[N] <CR>

Enter daemon start index? 3

NOTE:, tcpip daemons must start first so if there are other daemons put

the tcpip daemon at the beginning of the order before other non tcpip daemons

Enter the delay interval in seconds before starting the daemon? 0

Enter the delay interval in seconds while stopping the daemon? 0

Enter daemon description? TCP_IP daemon for secret IDS

<observe: Daemon entry added.

exit

3. Configure the device (SDA) for /dev/ether1 and /dev/ether2

NOTE: change security and integrity level to max:max

SAK

Enter command? sda

Enter device? /dev/ether1

Enter new device security level and categories? sl1

 Enter new device integrity level and categories? il0

 Modify discretionary access? Y

 Enter device modes for owner? rw

 Enter user name for specific permission? <CR>

 Enter device modes for group? rw

 108

 Enter group name for specific permission? <CR>

 Enter device modes for others? rw

 (VERIFY user & group is SYSTEM)

 Is access correct? Y

NOTE: repeat for device /dev/ether2

SAK

Enter command? sda

Enter device? /dev/ether2

Enter new device security level and categories? sl5 sc1

 Enter new device integrity level and categories? il0

 Modify discretionary access? Y

 Enter device modes for owner? rw

 Enter user name for specific permission? <CR>

 Enter device modes for group? rw

 Enter group name for specific permission? <CR>

 Enter device modes for others? rw

 (VERIFY user & group is SYSTEM)

 Is access correct? <CR>

NOTE: If ‘startup’ has been performed then proceed to step 4 to start the

daemons. If the tcpip_mls daemon was modified then restart that daemon before

proceeding to step 4.

4. Start the daemons

SAK

Enter command? start_daemon

 109

Enter daemon name? tcpip_unclass

<observe: daemon started successfully>

Enter daemon name? tcpip_secret

<observe: daemon started successfully>

Enter daemon name? <CR>

<observe: Start_daemon complete>

Functional Test

5. Testing IP interfaces.

Set security and integrity level to sl1:il0

SAK

run

At command prompt type: ifconfig

<observe: lo0 inet addr 127.0.0.1 netmask 255.0.0.0

/dev/ether1 inet addr 192.168.100.130 netmask 255.255.255.0

Repeat for security and integrity level of sl5 sc1:il0

End Functional Test

D. INSTALLING POSTGRESQL 7.4.18 ON STOP 6.3

This section will cover installing the open source database PostgreSQL

version 7.4.18 on the STOP 6.3 operating system. Three data areas will be

initialized, one just for regular testing, one data area for Snort’s unclassified

database and one data area for Snort’s secret database.

Postgres 7.4.18 Pre-Installation Instructions

To operate Postgresql and installed databases for the Snort sensors two

users need to be created. User postgres will run the postmaster database

process. User snort is required to make the database snort. Postgres 7.4.18

 110

does not have a function to give ownership to an entire database, only tables. In

order for the remote user snort coming in from the snort sensor to utilize the

database the user snort must make the database snort.

NOTE: copying files from CD to the STOP 6.3 file system requires the use of the

‘cdtool’. An example of using the cdtool is:
 cdtool cp /dev/cdrom /postgresql-7.4.18/postgresql-

7.4.18.tar.gz /usr/local/src/postgresql-7.4.18.tar.gz

1. Create Groups Named Postgres and Snort

Perform the following steps as admin at (max:max)

SAK

Enter command? ga_edit

? add

Enter group name? postgres

Enter group number (1 - X) NOTE: Use the last number

Enter user list request (a, d, l or q) q

<Observe: Group entry added

*Repeat steps starting with ‘add’ for group snort
exit

2. Create Users Named Postgres and Snort

Perform the following steps as admin with applicable security and integrity

levels to run the ua_edit process. (max:max)

NOTE: The function of user ‘postgres’ is to own the postmaster process and the

database areas. The function of user snort is to create the snort databases.

Neither user needs to have the capabilities to remotely logon to the XTS400 via

the TPE therefore, they should not be entire setup as normal users.

SAK

Enter command? ua_edit

 add

 Enter user name? postgres

 111

 Enter user number? Select the next available number

 Enter default group? postgres

 Add user to group? Y

 Enter command processor? /bin/sh

 Enter home directory? /home/postgres

 Enter user max security level and categories? max

 Enter user max integrity level and categories? max

 Enter user default security level and categories:min

 Enter user default integrity level and categories: oss

 Down grade allowed? n

 Upgrade allowed? n

 View optional when downgrading? n

 Change user password allowed? y

 Disconnect allowed? y

 Kill, ikill allowed? y

 Run allowed? y

 Set group allowed? n

 Set level, change default level allowed? y

 Shutdown allowed? n

 Unmarked printed output allowed? n

 multiple logins allowed? y

 change other users' passwords allowed? n

 repeat ua_edit and create a user called snort with group snort and home=

/home/snort. Duplicate the other settings

Change the password of each user using the cup command

SAK

Enter command? cup

Enter user name? postgres

Force user to change password at next authentication [N] <CR>

NOTE: Password length must be 6 - 16 characters in length and contain

 112

numerals and special characters.

Enter new user password? xts400

Enter new user password again? xts400

<Observe: User password changed

Repeat for user snort.
exit

After making the groups and users the group and passwd file needs to be

updated.

Set security and integrity level: min:oss

SAK

Enter command? run, or reattach to previous session at min:oss

From the shell prompt run the following commands:
/xts/untrusted/bin/xtsmkgroup > /etc/group
chmod 644 /etc/group

/xts/untrusted/bin/xtsmkpasswd > /etc/passwd
chmod 644 /etc/passwd

3. PostgreSQL 7.4.18 Installation

Perform following steps as admin at level (min:oss)

1. Make directory /usr/local/src
 mkdir /usr/local/src
 cd /usr/local/src
2. Copy postgresql-base-7.4.18.tar.gz from CD1 /postgresql-7.4.18 to

/usr/local/src
cdtool cp /dev/cdrom /postgres-7.4.18/postgresql-base-
7.4.18.tar.gz /usr/local/src/postgresql-7.4.18.tar.gz
tar -xvzf /usr/local/src/postgresql-base-7.4.18.tar.gz

cd /usr/local/src/postgresql-7.4.18

NOTE: Compiling Postgresql requires gmake > 3.76.1

 gmake --version = 3.8 on XTS400

 ISO/ANSI C compiler such as GCC

3. Run configure script
 ./configure --without-readline --without-zlib

 113

 NOTE: default installation is /usr/local/pgsql

 All other files install to sub-directories under /pgsql

 Use ./configure --help for other alternatives

NOTE: As of this installation <5/10/2008> STOP 6.3.1 did not have

readline library or zlib library installed, thus reason for the extra

parameters for the ./configure command

NOTE: ignore the errors related to Flex and Bison, they are only required

if building from CVS or changing any of the scanner definition files.

4. Start build with gmake:
 gmake

<Observe: final output is "All of PostgreSQL successfully made. Ready to

install">

5. (optional) Regression Tests:

 as a non-privileged user:
 gmake check

6. Install the files:
 gmake install

<Observe: PostgreSQL installation complete>

4. Post-installation Setup

Perform as user admin level (min:oss)

1. Update Environment Variables

 add to /etc/profile

 PATH=/usr/local/pgsql/bin:$PATH
 MANPATH=/usr/local/pgsql/man:$MANPATH

2. Initialize a database storage area on disk:

NOTE: this storage area will be at min:oss
 mkdir /usr/local/pgsql/data

 chown postgres /usr/local/pgsql/data

 Log out of XTS400 as admin and log in as postgres

 Start untrusted environment at min:oss

 114

 SAK
 run

 initdb -D /usr/local/pgsql/data

<Observe:

initdb -D /usr/local/pgsql/data…

>

3. Starting and stopping the database server as user postgres:

 Use the pg_ctl script as user postgres to start the databases

 type pg_ctl --help for options

Start: pg_ctl start -D /usr/local/pgsql/data -l serverlog

Stop: pg_ctl stop -D /usr/local/pgsql/data -m fast

Functional Test

4. Test the installation by making a database called mydb then login as postgres.

Postgressql 7.4.18 requries logging in with username and database unless the

database is the same name as the user.
 cd /usr/local/pgsql/data

 pg_ctl start -D /usr/local/pgsql/data -l logfile

 createdb mydb

 psql -U postgres -d mydb

 use \q to quit

Stop the database:
 pg_ctl stop –D /usr/local/pgsql/data –m fast

Logout from the untrusted environment

Logout as postgres
This completes setting up postgresql to run at level min:oss

5. Configure PostgreSQL to Operate at Multiple Security Levels

 Perform the following steps as admin unless noted.

1. Create two data locations for starting up two more instances of PostgreSQL

 Set security and integrity levels - min:max

 SAK

 115

 Enter command? fsm

 mkdir

 Enter the directory to create? /var/postgresql

 Should this be a deflection directory [N] <CR>

 <Observe: Directory added
 change

 Enter pathname? /var/postgresql

 Modify access level [N]? Y

 Enter new object security level and categories? sl0

 Enter new object integrity level and categories? il3

 Is the level correct [Y] <CR>

 Modify discretionary access [N] Y

 Enter new owner name? admin

 Enter new group name? stop

 Enter object modes for owner? rwx

 Enter user name for specific permission? postgres

 Enter object modes for specific user? rx

 Enter user name for specific permission? snort

 Enter object modes for specific user? rx

 Enter user name for specific permission? <CR>

 Enter object modes for group? <CR>

 Enter group name for specific permission? <CR>

 Enter object modes for others? <CR>

 Display the object [N] <CR>

 Okay to change [Y] <CR>

NOTE: User postgres and snort should have rx access to /var/postgresql

 mkdir

 Enter the directory to create? /var/postgresql/unclass_data

 Should this be a deflection directory [N] <CR>

 116

 <Observe: Directory created>
 change

 Enter pathname? /var/postgresql/unclass_data

 Modify access level? Y

 Enter new object security level and categories? sl1

 Enter new object integrity level and categories? il0

 Is the level correct [Y] <CR>

 Modify discetionary access [N] Y

 Enter new owner name? postgres

 Enter new group name? postgres

 Enter object modes for owner? rwx

 Enter user name for specific permission? snort

 Enter object modes for specific user? rwx

 Enter user name for specific permission? admin

 Enter object modes for specific user? rwx

 Enter user name for specific permission <CR>

 Enter object modes for group? <CR>

 Enter group name for specific permission? <CR>

 Enter object modes for others? <CR>

 Display the object [N] <CR>

 Okay to change [Y] <CR>

 NOTE: only users postgres, snort, and admin should have rwx access

 Access changed
 mkdir

 Enter the directory to create? /var/postgresql/secret_data

 Should this be a deflection directory[N] <CR>
 change

 Enter pathname? /var/postgresql/secret_data

 Modify access level? Y

 Enter new object security level and categories? sl5 sc1

 117

 Enter new object integrity level and categories? il0

 Is the level correct [Y] <CR>

 Modify discetionary access [N] Y

 Enter new owner name? postgres

 Enter new group name? postgres

 Enter object modes for owner? rwx

 Enter user name for specific permission? snort

 Enter object modes for specific user? rwx

 Enter user name for specific permission? admin

 Enter object modes for specific user? rwx

 Enter user name for specific permission <CR>

 Enter object modes for group? <CR>

 Enter group name for specific permission? <CR>

 Enter object modes for others? <CR>

 Display the object [N] <CR>

 Okay to change [Y] <CR>

 NOTE: only users postgres, snort, and admin should have rwx access

 Access changed
 exit

 logout admin

2. Initialize the database areas

 Log into XTS400 as user postgres

 Set security and integrity levels to sl1:il0

 SAK
 run

 cd /var/postgresql/unclass_data

 initdb -D /var/postgresql/unclass_data

 <Observe that the output is the same as step 2 Post-Installation Setup

 Run command ls

 <Observe that files and directories were created>

 118

 Edit postgresql.conf

Remove # from line tcpip_socket = false and change the line to

read: tcpip_socket = true

 Remove # from line port = 5432 and change the line to read

 port = 5433

 Save the file

 Edit pg_hba.conf

 Page down to the end of the file

Remove the IPv6 and local host entries NOTE: The MYSEA host file

does not use local host entries and localhost is not required.

 Append the following to the proper headers:

 TYPE host
 DATABASE snort
 USER snort
 IP_ADDRESS 192.168.100.0
 MASK 255.255.255.0
 AUTH_TYPE MD5
 Save the file

 Start the database
pg_ctl start -D /var/postgresql/unclass_data -l

logfile

Create the PostgreSQL database user snort so XTS400 user snort can

create the database snort

 Run the script createuser -p 5433 snort

 Shall the new user be allowed to create databases? y

 Shall the new user be allowed to create more new users? n

 <Observe: CREATE USER>

 Alter user snort’s database password
 psql -p 5433 -U postgres -d template1

 alter user snort password ‘mysea’;

 \q

 Stop the database

 119

 pg_ctl stop -D /var/postgresql/unclass_data -m fast

 REPEAT for data area /var/postgresql/secret_data

 Log out of session

 Change security and integrity levels to sl5 sc1:il0

 SAK
 run

 cd /var/postgresql/secret_data

 initdb -D /var/postgresql/secret_data

<Observe that the output is the same as step 2 Post-Installation Setup

 Run command ls

 <Observe that files and directories were created>

 Edit postgresql.conf

Remove # from line tcpip_socket = false and change the line to read
tcpip_socket = true

 Remove # from line port = 5432 and change the line to read
 port = 5434

 Save the file

 Edit pg_hba.conf

 Page down to the end of the file

Remove the IPv6 and localhost enteries. NOTE: The MYSEA host file

does not use local host entries and localhost is not required.

 Append the following entries to the proper headers

 TYPE host
 DATABASE snort
 USER snort
 IP_ADDRESS 192.168.101.0
 MASK 255.255.255.0
 AUTH_TYPE MD5
 Save the file

 Start the database
pg_ctl start -D /var/postgresql/secret_data -l

 120

logfile

Create the postgresql database user snort so XTS400 user snort can

create the database snort.

 Run the script createuser -p 5434 snort

 Shall the new user be allowed to create databases? y

 Shall the new user be allowed to create more new users? n

 <Observe: CREATE USER>

 Alter user snort’s password
 psql -p 5433 -U postgres -d template1

 alter user snort password ‘mysea’;

 \q

 Stop the database
 pg_ctl stop -D /var/postgresql/secret_data -m fast

3. Create two daemons for starting the new postgresql database areas

 log user postgres out of the system

 log into XTS as admin

 set security and integrity levels - min:max

 SAK

 Enter command? tp_edit

 type in cd then then enter to change to /system directory

 add

 Enter program name? pg_ctl

 Enter pathname?
 /usr/local/pgsql/bin/pg_ctl

 Enter maximum integrity? <CR>

 Enter minimum integrity? <CR>

 Assign privileges [N] Y

 Only assign Y to the following options:

 Enable "Set owner/group" privilege

 Modify discretionary access [N] Y

 121

 Enter new owner name? postgres

 Enter new group name? postgres

 Enter object modes for owner? rwx

 Enter user name for specific permission? snort

 Enter object modes for user? rwx

 Enter group name for specific permission? snort

 Enter object modes for group? rwx

 Enter object modes for others? none

 SAK - level should still be min:max

 Enter command? daemon_edit

 add

 Enter daemon name? psql_unclass

 Enter the command line for the daemon program? pg_ctl

 Enter the arguments for the program?
start -D /var/postgresql/unclass_data -l
/var/postgresql/unclass_data/logfile

 Enter daemon environment setting? <CR>

 Start daemon at startup? y

 Is the daemon a High Integrity program file? y

 Will this daemon control a device? n

 Enter daemon security level and categories? sl1

 Enter daemon integrity level and categories? il0

 Use default daemon priority [-1] (strongly recommended) [Y] <CR>

 Enter user name? postgres

 Enter group name? postgres

 Display current starting order before setting start index [N] <CR>

 Enter daemon start index (CR for end of list) (1-7) <CR>

 Enter the delay interval in seconds before starting the daemon? 4

 Enter the delay interval in seconds while stopping the daemon? 4

 Enter daemon description? start postgres at level

 122

unclassified

 REPEAT to create daemon to start postgresql at secret
 add

 Enter daemon name? psql_secret

 Enter the command line for the daemon program? pg_ctl

 Enter the arguments for the program?
start -D /var/postgresql/secret_data -l
/var/postgresql/secret_data/logfile

 Enter daemon environment setting? <CR>

 Start daemon at startup? y

 Is the daemon a High Integrity program file? y

 Will this daemon control a device? n

 Enter daemon security level and categories? sl5 sc1

 Enter daemon integrity level and categories? il0

 Use default daemon priority [-1] (strongly recommended) [Y] <CR>

 Enter user name? postgres

 Enter group name? postgres

 Display current starting order before setting start index [N] <CR>

 Enter daemon start index (CR for end of list) (1-7) <CR>

 Enter the delay interval in seconds before starting the daemon? 4

 Enter the delay interval in seconds while stopping the daemon? 4

 Enter daemon description? Start postgres at level secret

 exit

 Start both daemons:

 SAK

 Enter command? start_daemon

 Enter daemon name? psql_unclass

 <Observe: Daemon psql_unclass started successfully>

 Enter daemon name? psql_secret

 <Observe: Daemon psql_secret started successfully>

NOTE: This is not a guarantee that the databases are running. To verify the

 123

databases started properly, either remotely login with an available psql client or

login locally.

Functional Test

Example:

 Change security and integrity level to sl1:il0

 SAK
 run

 psql -p 5433 -U postgres -d template1

 <Observe: Welcome to psql, the PostgreSQL interactive terminal>

End Functional Test

4. Create the snort database

 Log in to XTS as user snort
 Change security and integrity level to sl1:il0

 SAK
 run

 cd /var/postgresql/unclass_data

 Run script createdb -p 5433 snort

 <Observe: CREATE DATABASE>

Run the schema update using create_postgresql from CD1 /snort-

2.8.0.1

SAK

<Change security and integrity level to max:max>

SAK

Enter command? sda

Enter device? /dev/cdrom

Enter new device security level and categories? sl1

Enter new device integrity level and categories? il0

Modify discretionary access [N] <CR>

Is access correct [Y] <CR>

<Observe: Device access has been set.

 124

SAK

<Change security and integrity level to sl1:il0>

SAK

Enter command reattach

Enter family number? 1
 cdtool cp /dev/cdrom /snort-2.8.0.1/create_postgresql

./create_postgresql

 psql -p 5433 < ./create_postgresql

 Log out of untrusted environment

 Change security and integrity level to sl5 sc1:il0
 SAK
 run

 cd /var/postgresql/secret_data

 run script createdb -p 5434 snort

 <Observe: CREATE DATABASE>

 run the schema update using create_postgresql from CD1 /snort-2.8.0.1

SAK

<Change security and integrity level to max:max>

SAK

Enter command? sda

Enter device? /dev/cdrom

Enter new device security level and categories? sl5 sc1

Enter new device integrity level and categories? il0

Modify discretionary access [N] <CR>

Is access correct [Y] <CR>

<Observe: Device access has been set.

SAK

<Change security and integrity level to sl5 sc1:il0>

SAK

Enter command reattach

 125

 Enter family number? 2
 cdtool cp /dev/cdrom /snort-2.8.0.1/create_postgresql

./create_postgresql

 psql -p 5434 < ./create_postgresql

 Log out of untrusted environment

 Reset CD-ROM back to min:oss

SAK

<change security and integrity level to max:max>

SAK

Enter command? sda

Enter device? /dev/cdrom

Enter new device security level and categories? min

Enter new device integrity level and categories? oss

Modify discretionary access [N] <CR>

Is access correct [Y] <CR>

<Observe: Device access has been set.

 Log out user snort from XTS400

5. Perform functional test if the sensors are finished:

 Functional Test

 Login to PostgresSQL database from sensor IDS1
 psql -h 192.168.100.130 -p 5433 -U snort -d snort

 Run a query

 select * from event;

 Should get 0 rows.

NOTE: If the output is access denied the database is not owned by snort

 Login to PostgreSQL database from sensor IDS2
 psql -h 192.168.101.130 -p 5434 -U snort -d snort

 Run a query
 select * from event;

 Should get 0 rows.

 126

NOTE: If the output is access denied the database is not owned by snort

End Functional Test

6. Return to Installing Debian snort sensor documentation and complete

the steps starting from Step 6. Finalize Sensor Installation.

E. INSTALLING BASE WEB APPLICATION ON STOP 6.3

This section will cover integrating PHP4.3 with the existing httpd so the

BASE web application functions with httpd. The MYSEA environment must

already be installed for these procedures to work.

NOTE: This will be a static install. See the INSTALL file in the php4

directory

NOTE: some components of php4 require pthread support. Pthreads was

not implemented in STOP 6.3 but the pthread.h, libpthread.a and libpthread.so

files still exist under /usr/include and /usr/lib respectively. Having these files in

this location causes the configure process to crash on a check looking for

pthread_cflags. Rename those files to pthread.h.old, libpthread.a.old and

libpthread.so.old.

NOTE: copying files from CD to the STOP 6.3 file system requires the use

of the ‘cdtool’. An example of using the cdtool is: cdtool cp /dev/cdrom

/postgres-7.4.18/postgresql-7.4.18.tar.gz

/usr/local/src/postgresql-7.4.18.tar.gz

For the XTS400 setup documentation all security and integrity levels are in

bold Arial font and are given as security first then integrity:

Example: sl0:il0

Means security level 0 integrity level 0

Example: min:oss

Means: lowest possible security level with integrity level set to il3 with all

categories enabled.

 127

1. PHP 4.3.11 Installation

 Perform the flex and bison install as admin <min:oss>

 NOTE: php4 requires flex and suggests bison

 Copy flex-2.5.4a-26.i386.rpm from CD1 /misc /usr/local/src
cdtool cp /dev/cdrom /misc/flex-2.5.4a-26.i386.rpm

/usr/local/src/flex-2.5.4a-26.i386.rpm

 Copy bison-1.35-4.i386.rpm from CD1 /misc to /usr/local/src
 cdtool cp /dev/cdrom /misc/bison-1.35-4.i386.rpm

 /usr/local/src/bison-1.35-4.i386.rpm

 rpm -iv flex-2.5.4a-26.i386.rpm

 rpm -iv bison-1.35-4.i386.rpm

 Perform the php4 install as admin <min:il3>

 Copy php-4.3.11.tar.tar from CD1 /php-4.3.11 to /usr/local/mysea

 SAK

 <Change security and integrity level to max:max>

 SAK

 Enter command? sda

 Enter device? /dev/cdrom

Enter new device security level and categories? min

Enter new device integrity level and categories? il3

Modify discretionary access [N] <CR>

Is access correct [Y] <CR>

<Observe: Device access has been set.

SAK

<Change security and integrity level min:il3>

SAK

Enter command? reattach

Enter family number? 3

 128

cdtool cp /dev/cdrom /php-4.3.11/php-4.3.11.tar.tar

/usr/local/mysea

 tar -xvzf php-4.3.11.tar.tar

 mv php-4.3.11 php4

cd php4

 NOTE: this install will be without graphics support for BASE which

is just the ability to make charts and graphs.
cp php.ini-dist /home/http/conf/php.ini

./configure --without-mysql --without-pear --with-
apache=/usr/local/mysea/apache --with-
pgsql=/usr/local/pgsql --with-config-file-
path=/home/http/conf

 Edit the Makefile

 Search for EXTRA_INCLUDES =

 Add this line: -I/usr/local/mysea/include

 NOTE: remember the Makefile statements are tab delimited

(separators)
 make

 make install prefix=/usr/local/mysea

 <Observe:

 Installing PHP SAPI module: apache

 Installing PHP CLI binary: /usr/local/mysea/bin

 Installing PHP CLI man page: /usr/local/mysea/man/man1/

 Installing build environment: /usr/local/mysea/lib/php/build

 Installing header files: /usr/local/mysea/include/php/

 Installing helper programs: /usr/local/mysea/bin

 program: phpsize

 program: php-config

 program: phpextdist

 129

2. Recompile Httpd to Include PHP Module

 cd /usr/local/mysea/apache/src

 Edit Configuration file

 NOTE file attributes may need to be changed to rw for admin (chmod

740 Configuration)

 Page down to the end of the file

 Add this line: AddModule modules/php4/libphp4.a

 Save the file and recompile
 ./Configure

 make

<Observe: there are no errors, just a warning about the use of mktemp,

which can be ignored>

<Expect: the size of httpd should now be approximately 5.8MB (5808437)

in size. Verify with ls -l httpd>

3. Httpd Installation

Save the old httpd file under /usr/local/mysea/bin by renaming it or copy it

off to a safe place and copy the new file into mysea/bin
cp /usr/local/mysea/apache/src/httpd

/usr/local/mysea/bin

 cd /usr/local/mysea/bin

 chmod 555 httpd

 cd /home/http/conf

 NOTE: might have to set write attribute on httpd.conf for admin
 chmod 644 httpd.conf

 Edit /home/http/conf/httpd.conf

Add the following lines to the httpd.conf file or uncomment the lines if they

exist:
 AddType application/x-httpd-php .php

AddType application/x-httpd-php-source .phps

 130

 chmod 444 httpd.conf if you did chmod 644 httpd.conf

4. Test PHP

 Functional Test
 mkdir /home/http/htdocs/ids_demo

chmod 755 /home/http/htdocs/ids_demo

 Create a test script called test.php in /home/http/htdocs/ids_demo

 Add the following to the script:
 <?php phpinfo();?>

 Save the file and exit the untrusted environment

 From a mysea workstation that has TCBE installed:

 Start the TCBE

 Click on SAR

 Enter user name: mdemo1

 Enter password: password

 Click on SAR

 Enter command: run

 Open an Internet browser

 In the URL address bar enter:
http://192.168.0.130/ids_demo/test.php

 <Observe: a PHP Version 4.3.11web page is generated>

End Functional Test

5. BASE Installation

Since there are two IDS one unclassified and one secret there needs to be

two BASE installs, one unclassified, and one secret.

Copy base-1.4.0.tar.gz from CD1 /base-1.4.0 to /home/http/htdocs/ids_demo/
 cdtool cp /dev/cdrom /base-1.4.0/base-1.4.0.tar.gz

/home/http/htdocs/ids_demo/base-1.4.0.tar.gz

 Exit untrusted environment

 Set security and integrity level min:il3

 131

 SAK

 Enter command? fsm

 ? mkdir

 Enter the directory to create?
 /home/http/htdocs/ids_demo/base_unclass

 Should this be a deflection directory [N] <CR>

 <Observe: Directory created>

 ? change

 Enter pathname?
 /home/http/htdocs/ids_demo/base_unclass

 Modify access level [N] Y

 Enter new object security level and categories? sl1

 Enter new object integrity level and categories? il0

 Is the level correct [Y] <CR>

 Modify discretionary access [N] <CR>

 Display the object [N] <CR>

 Okay to change [Y] <CR>

 **REPEAT to make directory for base_secret

 ? mkdir

 Enter the directory to create?
/home/http/htdocs/ids_demo/base_secret

 Should this be a deflection directory [N] <CR>

 <Observe: Directory created>

 ? change

 Enter pathname? /home/http/htdocs/ids_demo/base_secret

 Modify access level [N] Y

 Enter new object security level and categories? sl5 sc1

 Enter new object integrity level and categories? il0

 Is the level correct [Y] <CR>

 Modify discretionary access [N] <CR>

 132

 Display the object [N] <CR>

 Okay to change [Y] <CR>
 exit

 Change security and integrity level sl1:il0

 SAK
 run

 cd /home/http/htdocs/ids_demo

 tar -C base_unclass -xvzf base-1.4.0.tar.gz

 cd base_unclass/base-1.4.0

 mv * /home/http/htdocs/ids_demo/base_unclass

 chmod 777 /home/http/htdocs/ids_demo/base_unclass

NOTE the setup performed in step 7 requires rwx access. Will

change back later

 Exit the untrusted environment

 Change security and integrity level sl5 sc1:il0

 SAK
 run

 cd /home/http/htdocs/ids_demo

 tar -C base_secret -xvzf base-1.4.0.tar.gz

 cd base_secret/base-1.4.0

 mv * /home/http/htdocs/ids_demo/base_secret

 chmod 777 /home/http/htdocs/ids_demo/base_secret

NOTE the setup performed in step 8 requires rwx access to write

the base_conf.php file. Will change back later

 exit untrusted environment

 Change security and integrity level min:il3

 SAK
 run

 copy adodb498.gz from CD1 /base-1.4.0 to /usr/local/mysea
 cdtool cp /dev/cdrom /base-1.4.0/adodb498.gz

/usr/local/mysea/adodb498.gz

 133

 cd /usr/local/mysea

 tar -xvzf adodb498.gz

<Observe: adodb directory is created. There is nothing to install but the

scripts running in base_unclass and base_secret will need access to

these files>

6. Unclassified BASE Website Installation

 Start a session on a MYSEA client at SIM_UNCLASSIFIED

 Using Internet Explorer enter this address into the URL address bar:
http://192.168.0.130/ids_demo/base_unclass/setup/index.php

NOTE: if you get access denied check the directory attributes and

chmod to 777 for now

 Click on continue hyperlink

 Step 1 of 5

 Path to ADODB: /usr/local/mysea/adodb

 Click on Submit Query button

 Step 2 of 5

 Pick a Database type: PostGRES

 Database Name: snort

 Database Host: leave blank

 Database port: 5433

 Database user name: snort

 Database password: mysea

 Skip the Use Archive Database settings

 Click on Submit Query button

 Step 3 of 5

 Click the box next to Use Authentication System

 Admin User name: snort

NOTE: you can use any name you want

 Password: mysea

 134

 Full Name: snort

 Step 4 of 5

 Click on Create BASE AG button

 Click on 'Now continue to step 5... hyperlink (middle page)

 Login with user and password created in step 3 of 5

 When you come back to this site, the main page is base_main.php
http://192.168.0.130/ids_demo/base_unclass/base_main.php

 NOTE: don't forget to chmod 755 base_unclass

 Cosmetic changes:
cd /home/http/htdocs/ids_demo/base_unclass/languages

 Edit english.lang.php

 Search for _TITLE

 Add the word UNCLASS before and after the title in single quotes

 bug_fix: minor

When logging out: Fatal error: call to function base_header() in

/.../base_logout.php on line 23

 FIX: change base_header to header

7. Secret BASE Website Installation

 Start a session on a MYSEA client at SIM_SECRET

 Using Internet Explorer, enter this address into the URL address bar:

 http://192.168.0.130/ids_demo/base_secret/setup/index.php

NOTE: if you get access denied check the directory attributes and

chmod to 777 for now

 Click on continue

 Step 1 of 5

 Path to ADODB: /usr/local/mysea/adodb

 Click on Submit Query button

 Step 2 of 5

 Pick a Database type: PostGRES

 Database Name: snort

 135

 Database Host: leave blank

 Database port: 5434

 Database user name: snort

 Database password: leave blank

 Skip the Use Archive Database settings

 Click on Submit Query

 Step 3 of 5

 Click the box next to Use Authentication System

 Admin User name: snort

NOTE: you can use any name you want

 Password: mysea

 Full Name: snort

 Step 4 of 5

 Click on Create BASE AG button

 Click on 'Now continue to step 5... hyperlink (middle page)

 Login with user and password created in step 3 of 5

 To return to this web site use the main page: base_main.php
http://192.168.0.130/ids_demo/base_secret/base_main.php

 NOTE: don't forget to chmod 755 base_secret

 Cosmetic change:
cd /home/http/htdocs/ids_demo/base_secret/languages

 Edit english.lang.php

 Search for _TITLE

 Add the word SECRET before and after the title in single quotes

 bug_fix: minor

When logging out: Fatal error: call to function base_header() in

/.../base_logout.php on line 23

 FIX: change base_header to header

 136

THIS PAGE INTENTIONALLY LEFT BLANK

 137

APPENDIX C FUNCTIONAL TEST PLAN

This section covers a functional test of the IDS architecture for the Linux

Red Hat 8 environment and the XTS400 environment. The purpose of this

functional test is to test all of the IDS components as one functional unit. When

the alert mechanism on the IDS sensor is triggered data should move from the

IDS sensor via the PostgreSQL client to the PostgreSQL database. Data should

then be available for display using the BASE web application. The alert

mechanism will be triggered using an IDS false positive test generator called

‘IDSWakeup’.

IDS Wakeup sends several packets to a destination IP address with each

packet containing data that is interpreted as malicious data. Numerous unique

alerts are generated depending on the rule sets enabled on the sensor.

A. PRELIMINARY SETUP FOR FUNCTIONAL TESTING

1. IDSWakeup Installation

1. Build or clone another Debian 4.0 machine and name it Attacker. If the

choice is to build a new machine use the Installing Snort on Debian 4.0

instructions from Appendix A. Perform the installation except for installing

snort, snort rules, and lokkit.

2. Copy the three files to any directory. Change to that directory and install

all three packages in the following order

dpkg -i hping2_2.rc3-4_i386.deb

dpkg -i libnet0_1.0.2a-7_i386.deb

dpkg -i idswakeup_1.0.4_i386.deb

 If the Attacker and IDS sensors are on VMWare and the VMWare

machines are using bridged networking on one physical network port, both IDS

will see the traffic. If the physical machine has two network ports use separate

 138

bridges for each IDS sensor. Remember to switch the bridge on the Attacker

when switching from unclass network to secret network.

B. RED HAT 8 IDS ARCHITECTURE FUNCTIONAL TEST

1. Before starting IDSWakeup verify database and web site components

are available.

2. Edit the Snort configuration file /etc/snort/snort.conf on IDS1 and IDS2

to send alerts to the PostgreSQL database on the Red Hat 8 Linux

system.

Settings for IDS1:

output database: log, postgresql, user=snort

dbname=snort password=mysea host=192.168.100.3

port=5433

Settings for IDS2:

output datagase: log, postgresql, user=snort

dbname=snort password=mysea host=192.168.101.3

port=5434

3. Stop any running snort processes on each IDS:

ps aux | grep snort

kill <pid number>

 These tests will run Snort without using the daemon mode. This will

allow for collecting statistics that will be used to compare with the statistics

viewed on the BASE web site. Start the Snort process on each IDS sensor

snort -u snort -g snort -c /etc/snort/snort.conf &>

ids1_test1.txt

snort -u snort -g snort -c /etc/snort/snort.conf &>

ids2_test1.txt

 139

NOTE: All of the output (stdout and stderr) will be piped to the text files

and hold the command prompt. To view the text files to verify Snort properly

initialized switch to another virtual console (Alt+F2) and search the test file for

‘Initialization Complete’

4. From the workstation that can access the RH8 web server, open IE or

Firefox and browse to the secret BASE web site. Record the Total Number

of Alerts on the home page or clear all alerts.

5. Switch to the Unclass BASE website and Record the Total Number of

Alerts on the home page or clear all alerts.

NOTE: To clear alerts:

Click on the number next to the Total Number of Alerts:

Click on the drop down arrow next to {action} and select Delete alerts

Click on Entire Query button

6. Switch to the Attacker machine and start IDSWakeup

Verify Attacker machine is configured for unclassified network with

respect to bridge (VMWARE) and IP address.

Set the IP address to 192.168.100.50

 ifconfig eth0 192.168.100.50

 idswakeup <source IP> <destination IP>

 idswakeup 192.168.100.50 192.168.100.3

The goal is to attack the RH8 server not the IDS itself to verify the

IDS is reading the traffic.

Test will take about 1 to 2 minutes to run.

7. Refresh the browser; verify that alerts are being recorded. When the

IDSWakeup test completes, record the Total Number of Alerts observed

on the BASE home page to the table below.

 140

Table for recording results:

Total # Alerts Unique Alerts TCP% UDP% ICMP% Portscan Traffic %

8. On IDS1 do a crtl+z then kill %<pid> to stop the Snort process. Open

the file ids1_test1.txt and search for ‘Action Stats’. Verify that the entries

under Action Stats match the number of Total Number Alerts recorded

from step 7

 Action Stats:

 Alerts:

 Logged:

One other stat to check is dropped packets. Search for ‘Packet

Wire Totals’ and look for ‘Dropped’. Count should be zero.

9. Switch to the secret BASE web site. If the traffic is properly segregated

then the Total Number of Alerts count should have remained the same.

10. Reconfigure the Attacker box to operate on the secret network.

Reconfigure the bridge (VMWare) and IP address

ifconfig eth0 192.168.101.50

11. Restart the Snort process on IDS1 but do not pipe the output to a text

file. Repeat the IDSWakeup test

snort -u snort -g snort -c /etc/snort/snort.conf

idswakeup 192.168.101.50 192.168.101.3

12. Refresh the browser; verify that alerts are being recorded. When

IDSWakeup is finished recorded the Total Number of Alerts observed in

the table below.

 141

Table for recording results:

Total # Alerts Unique Alerts TCP% UDP% ICMP% Portscan Traffic %

13. On IDS2 do a crtl+z kill %<pid> to stop the Snort process. Open the

file ids2_test1.txt and search for ‘Action Stats’. Verify that the entries

under Action Stats match the number of Total Number Alerts recorded

from step 13

 Action Stats:

 Alerts:

 Logged:

One other stat to check is dropped packets. Search for ‘Packet

Wire Totals’ and look for ‘Dropped’. Count should be zero.

14. Switch to the unclassified BASE web site. If the traffic is properly

segregated then the Total Number of Alerts count should have remained

the same.

C. XTS400 IDS ARCHITECTURE FUNCTIONAL TEST

1. Verify database and web site components in the XTS400 environment

are running. Edit the Snort configuration file /etc/snort/snort.conf on IDS1

and IDS2 to send alerts to the PostgreSQL database on the XTS400

system.

Settings for IDS1:

output database: log, postgresql, user=snort

dbname=snort password=mysea host=192.168.100.130

port=5433

Settings for IDS2:

output datagase: log, postgresql, user=snort

 142

dbname=snort password=mysea host=192.168.101.130

port=5434

2. Stop any running Snort processes on each IDS.

Start the Snort process on each IDS.

snort -u snort -g snort -c /etc/snort/snort.conf &>

ids1_test2.txt

snort -u snort -g snort -c /etc/snort/snort.conf &>

ids2_test2.txt

NOTE: All of the output (stdout and stderr) will be piped to the text files

and hold the command prompt. To view the text files to verify Snort

properly initialized switch to another virtual console (Alt+F2) and search

the test file for ‘Initialization Complete’

3. From the workstation start the TCBE and then start a

SIM_UNCLASSIFIED session as user mdemo1.

4. Open the unclassified BASE web site and record the Total Number of

Alerts on the home page or clear all alerts. Close the web browser.

5. Change to a SIM_SECRET session and open the secret BASE web

site.

6. The Attacker machine should still be configured for the secret network.

Rerun the idswakeup test.

idswakeup 192.168.101.50 192.168.101.130

7. Refresh the browser; verify that alerts are being recorded. When the

IDSWakeup test completes, record the Total Number of Alerts observed

from the secret BASE home page to the table below.

 143

Table for recording results:

Total # Alerts Unique Alerts TCP% UDP% ICMP% Portscan Traffic %

8. On IDS2 do a crtl+z kill %<pid> to stop the Snort process. Open the

file ids2_test2.txt and search for ‘Action Stats’. Verify that the entries

under Action Stats match the number of Total Number Alerts recorded

from step 8

 Action Stats:

 Alerts:

 Logged:

One other stat to check is dropped packets. Search for ‘Packet

Wire Totals’ and look for ‘Dropped’. Count should be zero.

9. Close the browser.
10. Change to SIM_UNCLASSIFIED session then open the unclassified

BASE web site. If the sensors are properly segregated then the Total

Number of Alerts count should have remained the same.

11. Reconfigure the Attacker machine to operate on the unclassified

network.

If using VMWare reconfigure the bridge

ifconfig eth0 192.168.100.50

12. Restart the Snort process on IDS2 but do not pipe the output to a file.

Rerun the idswakeup test.
snort -u snort -g snort -c /etc/snort/snort.conf

idswakeup 192.168.100.50 192.168.100.130

13. Refresh the browser; verify that alerts are being recorded. When the

IDSWakeup test completes, record the Total Number of Alerts observed

from the unclassified BASE home page to the table below.

 144

Table for recording results:

Total # Alerts Unique Alerts TCP% UDP% ICMP% Portscan Traffic %

14. On IDS1 do a crtl+z kill%<pid> to stop the Snort process. Open the

file ids1_test2.txt and search for ‘Action Stats’. Verify that the entries

under Action Stats match the number of Total Number Alerts recorded

from step 14

 Action Stats:

 Alerts:

 Logged:

One other stat to check is dropped packets. Search for ‘Packet

Wire Totals’ and look for ‘Dropped’. Count should be zero.

This completes the testing of both the Red Hat 8 and XTS400

environments. Stop all Snort processes and log out of all sessions.

 145

LIST OF REFERENCES

[1] C. Irvine, T. Levin, T. Nguyen, D. Shifflet, J. Khosalim, P. Clark, A. Wong,
F. Afinidad, D. Bibighaus, and J. Sears, “Overview of a High Assurance
Architecture for Distributed Multilevel Security” in Proceedings 5th IEEE
Systems, Man and Cybernetics Information Assurance Workshop, United
States Military Academy, West Point, NY. 10 – 11 June 2004, pp. 38 – 45.

[2] J. Horn, IPSEC-BASED DYNAMIC SECURITY SERVICES FOR THE
MYSEA ENVIRONMENT, June 2005, Naval Postgraduate School,
Monterey, CA.

[3] M. Focke, BAE SYSTEMS XTS-400 Trusted Computer System Technical
Overview, BAE Systems Information Technology, Herndon, VA.

[4] T. Kohlenberg, et. al., Snort IDS and IPS Toolkit, 2007, Syngress
Publishing, Inc. Burlington, MA.

[5] Basic Analysis Security Engine (2008, February). Available:
http://base.secureideas.net/. Accessed: (February/2008).

[6] J. Anderson, Computer Security Threat Monitoring and Surveillance,
Contract 79F296400, Fort Washington, Pa, February 26, 1980.

[7] D. Denning, An Intrusion-Detection Model, IEEE Transactions of Software
Engineering, Vol. SE-13, NO. 2, February 1987..

[8] MySQL Proxy Service (2008, February). Available:
http://dev.mysql.com/tech-resources/articles/proxy-gettingstarted.html.
Accessed: (February 2008).

[9] K. Scarfone, P. Mell, Guide to Intrusion Detection and Prevention
Systems, Recommendations of the National Institute of Standards and
Technology, NIST, Special Publication 800-94, Gaithersburg MD,
February/2007.

[10] R. Ierusalimschy, et. al., Lua 5.1 Reference Manual, Lua.org, August 2006.

[11] Open Source Initiative, Available: http://www.opensource.org/, Accessed:
(March/2008).

[12] Linuxworld, Available: http://www.linuxworld.com/news/2007/0301207-top-
5-security.html, Accessed: (March/2008).

[13] Infosecwriters, Available: http://infosecwriters.com, Accessed:
(March/2008).

 146

[14] Snort, Available: http://www.snort.org, Accessed: (March/2008).

[15] Bro IDS, Available: http://www.bro-ids.org, Accessed: (March/2008).

[16] V. Paxson, et. al., Bro Quick Start Guide, version 0.9, 11-15-2004, The
Regents of the University of California, 2004.

[17] C. Gosselin, Open Source Intrusion Detection and Prevention: Tools for
Today’s Corporate Market?, Eastern Carolina University.

[18] Open Source Database Review, Available:
http://www.geocities.com/mailsoftware42/db/, Accessed: (March/2008).

[19] Aanval, Available http://www.aanval.com, Accessed: (March/2008).

[20] Basic Analysis Security Engine, Available: http://base.secureideas.net/,
Accessed: (March/2008).

[21] SGUIL, Available: http://sguil.sourceforge.net/, Accessed: (March/2008).

[22] Executive Order 12958, Part 3 Declassification and Downgrading, Office
of the Press Secretary, March 25, 2003.

[23] MySQL Internals Client Server Protocol,
http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol,
Accessed: (April/2008).

[24] SRI International project EMERALD,
http://www.sdl.sri.com/projects/emerald/concepts.html, Accessed:
(May/2008).

[25] SRI International project EMERALD,
http://www.sdl.sri.com/projects/emerald/project.html, Accessed:
(May/2008).

[26] MySQL Proxy, http://dev.mysql.com/tech-resources/articles/proxy-
gettingstarted.html, Accessed (May/2008).

[27] ADOdb, http://adodb.sourceforge.net/, Accessed (May/2008).

[28] Apache, http://httpd.apache.org/docs/1.3/dso.html, Accessed (May/2008).

[29] Insecure.org, http://seclists.org/bugtraq/2005/Apr/0305.html, Accessed
(May/2008).

[30] Cert, http://www.cert.org/advisories/CA-1996-11.html, Accessed
(May/2008).

 147

[31] IDSWakeup, http://www.hsc.fr/ressources/outils/idswakeup/index.html.en,
Accessed (May/2008).

[32] pg_shawdow, http://ou800doc.caldera.com/en/PostgresqlDoc/catalog-pg-
shadow.html, Accessed (May/2008).

[33] PostgreSQL Database Cluster,
http://www.postgresql.org/docs/7.4/static/creating-cluster.html, Accessed
(May/2008).

[34] How to test Snort, R. Bejtlich,
http://searchsecuritychannel.techtarget.com/tip/0,289483,sid97_gci126631
3,00.html#, August 2007. Accessed (May/2008).

 148

THIS PAGE INTENTIONALLY LEFT BLANK

 149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Susan Alexander
OASD/NII DOD/CIO
Washington, D.C.

4. Hugo A. Badillo
NSA
Fort Meade, MD

5. George Bieber
OSD
Wasington, D.C.

6. John Cambell
National Security Agency
Fort Meade, MD

7. Deborah Cooper
DC Associates, LLC
Roslyn, VA

8. Dr. Grace Crowder
NSA
Fort Meade, MD

9. Louise Davidson
National Geospatial Agency
Bethesda, MD

10. Steve Davis
NRO
Chantilly, VA

11. Vincent J. DiMaria
National Security Agency
Fort Meade, MD

 150

12. Dr. Tim Fossum
National Science Foundation
Arlington, VA

13. Jennifer Guild
SPAWAR
Charleston, SC

14. CDR Scott Heller
SPAWAR
Charleston, SC

15. Steve LaFountain
NSA
Fort Meade, MD

16. Dr. Greg Larson
IDA
Alexandria, VA

17. Dr. Karl Levitt
NSF
Arlington, VA

18. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

19. John Mildner
SPAWAR
Charleston, SC

20. Jim Roberts
Central Intelligence Agency
Reston, VA

21. Ed Schneider
IDA
Alexandria, VA

22. Mark Schneider
NSA
Fort Meade, MD

 151

23. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

24. Ken Shotting
NSA
Fort Meade, MD

25. CDR Wayne Slocum
SPAWAR
San Diego, CA

26. Dr. Ralph Wachter
ONR
Arlington, VA

27. Matt Warnock
Booze-Allen-Hamilton
Arlington, VA

28. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

29. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

30. Thomas Tenhunen
SFS Student: Civilian, Naval Postgraduate School
Monterey, CA

